Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 61

2.

Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae.

Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K.

Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9039-44. Epub 2004 Jun 7.

4.
5.

Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.

Myung K, Smith S, Kolodner RD.

Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15980-5. Epub 2004 Oct 28.

6.

Induction of genome instability by DNA damage in Saccharomyces cerevisiae.

Myung K, Kolodner RD.

DNA Repair (Amst). 2003 Mar 1;2(3):243-58.

PMID:
12547388
7.
8.

Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae.

Schmidt KH, Pennaneach V, Putnam CD, Kolodner RD.

Methods Enzymol. 2006;409:462-76.

PMID:
16793418
9.

Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae.

Putnam CD, Kolodner RD.

Genetics. 2017 Jul;206(3):1187-1225. doi: 10.1534/genetics.112.145805. Review.

10.

Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex.

Banerjee S, Sikdar N, Myung K.

Biochem Biophys Res Commun. 2007 Oct 26;362(3):546-9. Epub 2007 Jul 31. Review.

11.

A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements.

Chan JE, Kolodner RD.

PLoS Genet. 2011 May;7(5):e1002089. doi: 10.1371/journal.pgen.1002089. Epub 2011 May 26.

12.

Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae.

Pennaneach V, Kolodner RD.

PLoS One. 2009 Jul 28;4(7):e6389. doi: 10.1371/journal.pone.0006389.

13.

A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.

Kanellis P, Gagliardi M, Banath JP, Szilard RK, Nakada S, Galicia S, Sweeney FD, Cabelof DC, Olive PL, Durocher D.

PLoS Genet. 2007 Aug;3(8):e134.

14.
15.

Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway.

Sikdar N, Banerjee S, Zhang H, Smith S, Myung K.

PLoS Genet. 2008 Dec;4(12):e1000290. doi: 10.1371/journal.pgen.1000290. Epub 2008 Dec 5.

16.

Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13.

Piazza A, Serero A, Boulé JB, Legoix-Né P, Lopes J, Nicolas A.

PLoS Genet. 2012;8(11):e1003033. doi: 10.1371/journal.pgen.1003033. Epub 2012 Nov 1.

17.

Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae.

Myung K, Chen C, Kolodner RD.

Nature. 2001 Jun 28;411(6841):1073-6.

PMID:
11429610
18.

Maintenance of genome stability in Saccharomyces cerevisiae.

Kolodner RD, Putnam CD, Myung K.

Science. 2002 Jul 26;297(5581):552-7. Review.

PMID:
12142524
19.

Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability.

Myung K, Pennaneach V, Kats ES, Kolodner RD.

Proc Natl Acad Sci U S A. 2003 May 27;100(11):6640-5. Epub 2003 May 15.

20.

Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins.

Huang D, Koshland D.

Genes Dev. 2003 Jul 15;17(14):1741-54. Erratum in: Genes Dev. 2004 Mar 1;18(5):595.

Supplemental Content

Support Center