Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells.

Mitra S, Annamalai L, Chakraborty S, Johnson K, Song XH, Batra SK, Mehta PP.

Mol Biol Cell. 2006 Dec;17(12):5400-16.

2.

Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells.

Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin MF, Mehta PP.

PLoS One. 2014 Sep 4;9(9):e106437. doi: 10.1371/journal.pone.0106437.

3.

Retinoids regulate the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells.

Kelsey L, Katoch P, Johnson KE, Batra SK, Mehta PP.

PLoS One. 2012;7(4):e32846. doi: 10.1371/journal.pone.0032846.

4.

Pathways for degradation of connexins and gap junctions.

Berthoud VM, Minogue PJ, Laing JG, Beyer EC.

Cardiovasc Res. 2004 May 1;62(2):256-67. Review.

5.

The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells.

Katoch P, Mitra S, Ray A, Kelsey L, Roberts BJ, Wahl JK 3rd, Johnson KR, Mehta PP.

J Biol Chem. 2015 Feb 20;290(8):4647-62. doi: 10.1074/jbc.M114.586057.

6.

Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by alpha-catenin.

Govindarajan R, Zhao S, Song XH, Guo RJ, Wheelock M, Johnson KR, Mehta PP.

J Biol Chem. 2002 Dec 20;277(51):50087-97.

7.

Suppression of human prostate cancer cell growth by forced expression of connexin genes.

Mehta PP, Perez-Stable C, Nadji M, Mian M, Asotra K, Roos BA.

Dev Genet. 1999;24(1-2):91-110.

PMID:
10079514
8.

Regulation of gap junction intercellular communication by the ubiquitin system.

Kjenseth A, Fykerud T, Rivedal E, Leithe E.

Cell Signal. 2010 Sep;22(9):1267-73. doi: 10.1016/j.cellsig.2010.03.005. Review.

PMID:
20206687
9.

Degradation of connexins and gap junctions.

Falk MM, Kells RM, Berthoud VM.

FEBS Lett. 2014 Apr 17;588(8):1221-9. doi: 10.1016/j.febslet.2014.01.031. Review.

10.

Regulation of connexin degradation as a mechanism to increase gap junction assembly and function.

Musil LS, Le AC, VanSlyke JK, Roberts LM.

J Biol Chem. 2000 Aug 18;275(33):25207-15.

12.

Low pH enhances connexin32 degradation in the pancreatic acinar cell.

Reed AM, Kolodecik T, Husain SZ, Gorelick FS.

Am J Physiol Gastrointest Liver Physiol. 2014 Jul 1;307(1):G24-32. doi: 10.1152/ajpgi.00010.2014.

14.

Cellular mechanisms of connexin32 mutations associated with CNS manifestations.

Kleopa KA, Yum SW, Scherer SS.

J Neurosci Res. 2002 Jun 1;68(5):522-34.

PMID:
12111842
15.

Cx32 formation and/or Cx32-mediated intercellular communication induces expression and function of tight junctions in hepatocytic cell line.

Kojima T, Spray DC, Kokai Y, Chiba H, Mochizuki Y, Sawada N.

Exp Cell Res. 2002 May 15;276(1):40-51.

PMID:
11978007
16.

Analysis of connexin intracellular transport and assembly.

VanSlyke JK, Musil LS.

Methods. 2000 Feb;20(2):156-64.

PMID:
10671309
18.
19.

Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development.

Dianati E, Poiraud J, Weber-Ouellette A, Plante I.

Dev Biol. 2016 Aug 1;416(1):52-68. doi: 10.1016/j.ydbio.2016.06.011.

PMID:
27291930
20.

Steroid hormone regulation of rat myometrial gap junction formation: effects on cx43 levels and trafficking.

Hendrix EM, Myatt L, Sellers S, Russell PT, Larsen WJ.

Biol Reprod. 1995 Mar;52(3):547-60.

Items per page

Supplemental Content

Support Center