Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Computational selection of nucleic acid biosensors via a slip structure model.

Hall B, Hesselberth JR, Ellington AD.

Biosens Bioelectron. 2007 Apr 15;22(9-10):1939-47. Epub 2006 Sep 22.

PMID:
16996258
2.

Design and optimization of effector-activated ribozyme ligases.

Robertson MP, Ellington AD.

Nucleic Acids Res. 2000 Apr 15;28(8):1751-9.

3.

Selecting nucleic acids for biosensor applications.

Rajendran M, Ellington AD.

Comb Chem High Throughput Screen. 2002 Jun;5(4):263-70.

PMID:
12052178
4.

Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme.

de Silva C, Walter NG.

RNA. 2009 Jan;15(1):76-84. doi: 10.1261/rna.1346609. Epub 2008 Nov 24.

5.

Ribozyme-mediated signal augmentation on a mass-sensitive biosensor.

Knudsen SM, Lee J, Ellington AD, Savran CA.

J Am Chem Soc. 2006 Dec 20;128(50):15936-7.

PMID:
17165697
6.

Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.

Goler JA, Carothers JM, Keasling JD.

Methods Mol Biol. 2014;1111:221-35. doi: 10.1007/978-1-62703-755-6_16.

PMID:
24549623
7.
8.
9.

Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal.

Cho S, Kim JE, Lee BR, Kim JH, Kim BG.

Nucleic Acids Res. 2005 Nov 27;33(20):e177.

10.

Fluorescent energy transfer readout of an aptazyme-based biosensor.

Rueda D, Walter NG.

Methods Mol Biol. 2006;335:289-310. Review.

PMID:
16785635
11.

Design principles for ligand-sensing, conformation-switching ribozymes.

Chen X, Ellington AD.

PLoS Comput Biol. 2009 Dec;5(12):e1000620. doi: 10.1371/journal.pcbi.1000620. Epub 2009 Dec 24.

12.
13.

Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes.

Penchovsky R, Breaker RR.

Nat Biotechnol. 2005 Nov;23(11):1424-33. Epub 2005 Oct 23.

PMID:
16244657
14.

Kinetic optimization of a protein-responsive aptamer beacon.

Hall B, Cater S, Levy M, Ellington AD.

Biotechnol Bioeng. 2009 Aug 15;103(6):1049-59. doi: 10.1002/bit.22355.

PMID:
19431189
15.

Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector.

Lee HW, Robinson SG, Bandyopadhyay S, Mitchell RH, Sen D.

J Mol Biol. 2007 Aug 31;371(5):1163-73. Epub 2007 Jun 21.

PMID:
17619022
16.

ADLOC: an aptamer-displacement assay based on luminescent oxygen channeling.

Niebel B, Lentz C, Pofahl M, Mayer G, Hoerauf A, Pfarr KM, Famulok M.

Chemistry. 2010 Sep 24;16(36):11100-7. doi: 10.1002/chem.201001192.

PMID:
20690121
17.

Computational design of allosteric ribozymes as molecular biosensors.

Penchovsky R.

Biotechnol Adv. 2014 Sep-Oct;32(5):1015-27. doi: 10.1016/j.biotechadv.2014.05.005. Epub 2014 May 27. Review.

PMID:
24877999
18.

DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin.

Najafi-Shoushtari SH, Famulok M.

Blood Cells Mol Dis. 2007 Jan-Feb;38(1):19-24. Epub 2006 Dec 5.

PMID:
17150386
19.

A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins.

Wu ZS, Zheng F, Shen GL, Yu RQ.

Biomaterials. 2009 May;30(15):2950-5. doi: 10.1016/j.biomaterials.2009.02.017. Epub 2009 Feb 28.

PMID:
19254812
20.

Dynamics of an anti-VEGF DNA aptamer: a single-molecule study.

Nick Taylor J, Darugar Q, Kourentzi K, Willson RC, Landes CF.

Biochem Biophys Res Commun. 2008 Aug 22;373(2):213-8. doi: 10.1016/j.bbrc.2008.05.191. Epub 2008 Jun 13.

PMID:
18555799

Supplemental Content

Support Center