Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 192

1.

Large-area surface-plasmon polariton interference lithography.

Guo X, Du J, Guo Y, Yao J.

Opt Lett. 2006 Sep 1;31(17):2613-5.

PMID:
16902636
2.

Surface plasmon polariton analogue to Young's double-slit experiment.

Zia R, Brongersma ML.

Nat Nanotechnol. 2007 Jul;2(7):426-9. doi: 10.1038/nnano.2007.185. Epub 2007 Jul 1.

PMID:
18654327
3.

A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique.

He M, Zhang Z, Shi S, Du J, Li X, Li S, Ma W.

Opt Express. 2010 Jul 19;18(15):15975-80. doi: 10.1364/OE.18.015975.

PMID:
20720981
4.

Numerical prediction of minimum sub-diffraction-limit image generated by silver surface plasmon lenses.

Fujii M, Freude W, Leuthold J.

Opt Express. 2008 Dec 8;16(25):21039-52.

PMID:
19065244
5.

Long-range dielectric-loaded surface plasmon-polariton waveguides.

Holmgaard T, Gosciniak J, Bozhevolnyi SI.

Opt Express. 2010 Oct 25;18(22):23009-15. doi: 10.1364/OE.18.023009.

PMID:
21164640
6.

Subwavelength photolithography based on surface-plasmon polariton resonance.

Luo X, Ishihara T.

Opt Express. 2004 Jul 12;12(14):3055-65.

PMID:
19483824
7.

Surface plasmon polariton-based optical beam profiler.

Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR.

Opt Lett. 2004 Jun 15;29(12):1408-10.

PMID:
15233451
8.

Surface plasmon polariton propagation in nanoscale metal gap waveguides.

Wang B, Wang GP.

Opt Lett. 2004 Sep 1;29(17):1992-4.

PMID:
15455757
9.
10.

Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides.

Jetté-Charbonneau S, Berini P.

J Opt Soc Am A Opt Image Sci Vis. 2006 Jul;23(7):1757-67.

PMID:
16783442
11.

Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography.

Murukeshan VM, Sreekanth KV.

Opt Lett. 2009 Mar 15;34(6):845-7.

PMID:
19282952
12.

Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning.

Sreekanth KV, Murukeshan VM.

J Opt Soc Am A Opt Image Sci Vis. 2010 Jan;27(1):95-9. doi: 10.1364/JOSAA.27.000095.

PMID:
20035308
13.

SERS enhancements via periodic arrays of gold nanoparticles on silver film structures.

Montgomery JM, Imre A, Welp U, Vlasko-Vlasov V, Gray SK.

Opt Express. 2009 May 11;17(10):8669-75.

PMID:
19434200
14.

Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement.

Pan MY, Lin EH, Wang L, Wei PK.

Nanoscale Res Lett. 2014 Aug 25;9(1):430. doi: 10.1186/1556-276X-9-430. eCollection 2014.

15.

Control of 2D plasmon-polariton mode with dielectric nanolayers.

Guo J, Adato R.

Opt Express. 2008 Jan 21;16(2):1232-7.

PMID:
18542197
16.

Light focusing on a stack of metal-insulator-metal waveguides sharp edge.

Saj WM.

Opt Express. 2009 Aug 3;17(16):13615-23.

PMID:
19654769
17.

Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.

Liu L, Luo Y, Zhao Z, Zhang W, Gao G, Zeng B, Wang C, Luo X.

Sci Rep. 2016 Jul 28;6:30450. doi: 10.1038/srep30450.

18.

Interference of surface waves in a metallic nanoslit.

Ung B, Sheng Y.

Opt Express. 2007 Feb 5;15(3):1182-90.

PMID:
19532347
19.

Experimental studies of surface plasmon polariton band gap effect.

Volkov VS, Bozhevolnyi SI, Leosson K, Boltasseva A.

J Microsc. 2003 Jun;210(Pt 3):324-9.

20.

Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation.

Jen YJ, Lakhtakia A, Yu CW, Chan TY.

J Opt Soc Am A Opt Image Sci Vis. 2009 Dec;26(12):2600-6. doi: 10.1364/JOSAA.26.002600.

PMID:
19956330

Supplemental Content

Support Center