Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111


Crystal structure of the C-terminal domain of S.cerevisiae eIF5.

Wei Z, Xue Y, Xu H, Gong W.

J Mol Biol. 2006 May 26;359(1):1-9.


The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5.

Bieniossek C, Schütz P, Bumann M, Limacher A, Uson I, Baumann U.

J Mol Biol. 2006 Jul 7;360(2):457-65.


Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation.

Singh CR, Curtis C, Yamamoto Y, Hall NS, Kruse DS, He H, Hannig EM, Asano K.

Mol Cell Biol. 2005 Jul;25(13):5480-91.


Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode.

Singh CR, Watanabe R, Chowdhury W, Hiraishi H, Murai MJ, Yamamoto Y, Miles D, Ikeda Y, Asano M, Asano K.

Mol Cell Biol. 2012 Oct;32(19):3978-89. doi: 10.1128/MCB.00376-12.


Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2.

Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG.

EMBO J. 1999 Mar 15;18(6):1673-88. Erratum in: EMBO J 1999 May 4;18(9):2670.


Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation.

Das S, Maitra U.

Prog Nucleic Acid Res Mol Biol. 2001;70:207-31. Review.


Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein.

Das S, Ghosh R, Maitra U.

J Biol Chem. 2001 Mar 2;276(9):6720-6.


The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo.

Valásek L, Mathew AA, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG.

Genes Dev. 2003 Mar 15;17(6):786-99.


The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection.

He H, von der Haar T, Singh CR, Ii M, Li B, Hinnebusch AG, McCarthy JE, Asano K.

Mol Cell Biol. 2003 Aug;23(15):5431-45.


The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P, Markus MA, Akabayov B, Milbradt AG, Luna LE, Seo HC, Hyberts SG, Fahmy A, Reibarkh M, Miles D, Hagner PR, O'Day EM, Yi T, Marintchev A, Hinnebusch AG, Lorsch JR, Asano K, Wagner G.

Cell Rep. 2012 Jun 28;1(6):689-702. doi: 10.1016/j.celrep.2012.04.007.


Study of translational control of eukaryotic gene expression using yeast.

Hinnebusch AG, Asano K, Olsen DS, Phan L, Nielsen KH, Valásek L.

Ann N Y Acad Sci. 2004 Dec;1038:60-74.


Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.

Asano K, Shalev A, Phan L, Nielsen K, Clayton J, Valásek L, Donahue TF, Hinnebusch AG.

EMBO J. 2001 May 1;20(9):2326-37.


The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G.

Yamamoto Y, Singh CR, Marintchev A, Hall NS, Hannig EM, Wagner G, Asano K.

Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16164-9.

Items per page

Supplemental Content

Support Center