Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Cochlea's graded curvature effect on low frequency waves.

Manoussaki D, Dimitriadis EK, Chadwick RS.

Phys Rev Lett. 2006 Mar 3;96(8):088701. Epub 2006 Mar 2.

PMID:
16606236
2.

Direct measurement of intra-cochlear pressure waves.

Olson ES.

Nature. 1999 Dec 2;402(6761):526-9.

PMID:
10591211
3.

The physics of hearing: fluid mechanics and the active process of the inner ear.

Reichenbach T, Hudspeth AJ.

Rep Prog Phys. 2014 Jul;77(7):076601. doi: 10.1088/0034-4885/77/7/076601. Epub 2014 Jul 9. Review.

PMID:
25006839
4.

Hearing. Spreading the fluid word.

Ashmore J, de Boer J.

Nature. 1999 Dec 2;402(6761):476-7. No abstract available.

PMID:
10591203
5.

The cochlear amplifier as a standing wave: "squirting" waves between rows of outer hair cells?

Bell A, Fletcher NH.

J Acoust Soc Am. 2004 Aug;116(2):1016-24.

PMID:
15376668
6.

Dual traveling waves in an inner ear model with two degrees of freedom.

Lamb JS, Chadwick RS.

Phys Rev Lett. 2011 Aug 19;107(8):088101. Epub 2011 Aug 16.

7.

How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.

Vetesnik A, Nobili R, Gummer A.

ORL J Otorhinolaryngol Relat Spec. 2006;68(6):347-52. Epub 2006 Oct 26.

PMID:
17065828
8.

[Stiffness gradient of the basilar membrane and tonotopia in the internal ear of mammals].

Prokof'eva LI, Chernyĭ AG.

Nauchnye Doki Vyss Shkoly Biol Nauki. 1987;(3):44-50. Russian.

PMID:
3580419
9.

Fluid coupling in a discrete model of cochlear mechanics.

Elliott SJ, Lineton B, Ni G.

J Acoust Soc Am. 2011 Sep;130(3):1441-51. doi: 10.1121/1.3607420.

PMID:
21895085
10.

Forward and reverse waves in nonclassical models of the cochlea.

de Boer E.

J Acoust Soc Am. 2007 May;121(5 Pt1):2819-21.

PMID:
17550180
11.

Effect of opening and draining the cochlea.

Steele CR, Zais JG.

J Acoust Soc Am. 1985 Jul;78(1 Pt 1):84-9.

PMID:
4019911
12.

Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.

Chan WX, Yoon YJ.

Hear Res. 2015 Sep;327:136-42. doi: 10.1016/j.heares.2015.06.002. Epub 2015 Jun 10.

PMID:
26070425
13.
14.

Frequency analysis in the cochlea and the traveling wave of von Békésy.

Naftalin L.

Physiol Chem Phys. 1980;12(6):521-6.

PMID:
7267738
15.

Efferent-mediated control of basilar membrane motion.

Cooper NP, Guinan JJ Jr.

J Physiol. 2006 Oct 1;576(Pt 1):49-54. Epub 2006 Aug 10. Review.

16.

The influence of cochlear shape on low-frequency hearing.

Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O'Malley JT.

Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6162-6. doi: 10.1073/pnas.0710037105. Epub 2008 Apr 14.

17.

Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model.

Nobili R, Vetesnik A, Turicchia L, Mammano F.

J Assoc Res Otolaryngol. 2003 Dec;4(4):478-94. Epub 2003 Jul 10.

18.

Basilar membrane motion in a spiral-shaped cochlea.

Viergever MA.

J Acoust Soc Am. 1978 Oct;64(4):1048-53.

PMID:
744829
19.

Waves on Reissner's membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea.

Reichenbach T, Stefanovic A, Nin F, Hudspeth AJ.

Cell Rep. 2012 Apr 19;1(4):374-84.

20.

A traveling-wave amplifier model of the cochlea.

Hubbard A.

Science. 1993 Jan 1;259(5091):68-71.

PMID:
8418496

Supplemental Content

Support Center