Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 779

1.

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Burgomaster KA, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2006 Jun;100(6):2041-7. Epub 2006 Feb 9.

2.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

3.

Effect of endurance training on muscle TCA cycle metabolism during exercise in humans.

Howarth KR, LeBlanc PJ, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2004 Aug;97(2):579-84. Epub 2004 Apr 30.

4.

Effects of short-term submaximal training in humans on muscle metabolism in exercise.

Putman CT, Jones NL, Hultman E, Hollidge-Horvat MG, Bonen A, McConachie DR, Heigenhauser GJ.

Am J Physiol. 1998 Jul;275(1 Pt 1):E132-9.

PMID:
9688884
5.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
6.

Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.

Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM.

Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E380-8. Epub 2005 Sep 27.

7.

Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise.

Leblanc PJ, Howarth KR, Gibala MJ, Heigenhauser GJ.

J Appl Physiol (1985). 2004 Dec;97(6):2148-53. Epub 2004 Jun 25.

8.

Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA.

J Physiol. 2006 Sep 15;575(Pt 3):901-11. Epub 2006 Jul 6.

9.

Short-term training attenuates muscle TCA cycle expansion during exercise in women.

Dawson KD, Howarth KR, Tarnopolsky MA, Wong ND, Gibala MJ.

J Appl Physiol (1985). 2003 Sep;95(3):999-1004. Epub 2003 May 23.

10.

Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.

Stellingwerff T, Glazier L, Watt MJ, LeBlanc PJ, Heigenhauser GJ, Spriet LL.

J Appl Physiol (1985). 2005 Jan;98(1):250-6. Epub 2004 Sep 17.

11.

Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle.

Howarth KR, Burgomaster KA, Phillips SM, Gibala MJ.

Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1335-41. Epub 2007 Jun 20.

12.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60. Epub 2007 Nov 8.

13.

Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes.

Harmer AR, Chisholm DJ, McKenna MJ, Hunter SK, Ruell PA, Naylor JM, Maxwell LJ, Flack JR.

Diabetes Care. 2008 Nov;31(11):2097-102. doi: 10.2337/dc08-0329. Epub 2008 Aug 20. Erratum in: Diabetes Care. 2009 Mar;32(3):523.

14.

Exercise with low muscle glycogen augments TCA cycle anaplerosis but impairs oxidative energy provision in humans.

Gibala MJ, Peirce N, Constantin-Teodosiu D, Greenhaff PL.

J Physiol. 2002 May 1;540(Pt 3):1079-86.

15.

The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance.

Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL.

J Appl Physiol (1985). 2007 Mar;102(3):1022-7. Epub 2006 Dec 14.

16.

VO2 kinetics and performance in soccer players after intense training and inactivity.

Christensen PM, Krustrup P, Gunnarsson TP, Kiilerich K, Nybo L, Bangsbo J.

Med Sci Sports Exerc. 2011 Sep;43(9):1716-24. doi: 10.1249/MSS.0b013e318211c01a.

PMID:
21311360
17.

Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

Mourtzakis M, Saltin B, Graham T, Pilegaard H.

J Appl Physiol (1985). 2006 Jun;100(6):1822-30. Epub 2006 Jan 19.

18.

Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women.

Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL.

J Appl Physiol (1985). 2007 Apr;102(4):1439-47. Epub 2006 Dec 14.

19.

Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling.

Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM.

J Appl Physiol (1985). 2010 Jul;109(1):126-34. doi: 10.1152/japplphysiol.00950.2009. Epub 2010 May 13.

20.

Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans.

Kimber NE, Heigenhauser GJ, Spriet LL, Dyck DJ.

J Physiol. 2003 May 1;548(Pt 3):919-27. Epub 2003 Mar 21.

Supplemental Content

Support Center