Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 223

1.

A diet-induced mouse model for glutaric aciduria type I.

Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI, Cheng KC.

Brain. 2006 Apr;129(Pt 4):899-910. Epub 2006 Jan 30.

PMID:
16446282
2.

Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I.

Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, Goodman SI.

Hum Mol Genet. 2002 Feb 15;11(4):347-57.

PMID:
11854167
3.

Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.

Sauer SW, Opp S, Komatsuzaki S, Blank AE, Mittelbronn M, Burgard P, Koeller DM, Okun JG, Kölker S.

Biochim Biophys Acta. 2015 May;1852(5):768-77. doi: 10.1016/j.bbadis.2014.12.022. Epub 2015 Jan 2.

4.

Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I.

Olivera-Bravo S, Ribeiro CA, Isasi E, Trías E, Leipnitz G, Díaz-Amarilla P, Woontner M, Beck C, Goodman SI, Souza D, Wajner M, Barbeito L.

Hum Mol Genet. 2015 Aug 15;24(16):4504-15. doi: 10.1093/hmg/ddv175. Epub 2015 May 12.

PMID:
25968119
5.

Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency.

Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LR, Mühlhausen C, Hoffmann GF, Hörster F, Goodman SI, Harding CO, Koeller DM, Kölker S.

J Neurochem. 2006 May;97(3):899-910. Epub 2006 Mar 29.

6.

Preliminary attempts to establish a rat model of striatal injury in glutaric acidaemia type I.

Funk CB, Prasad AN, Del Bigio MR.

J Inherit Metab Dis. 2004;27(6):819-24.

PMID:
15505387
7.

Infant mice with glutaric acidaemia type I have increased vulnerability to 3-nitropropionic acid toxicity.

Bjugstad KB, Crnic LS, Goodman SI, Freed CR.

J Inherit Metab Dis. 2006 Oct;29(5):612-9. Epub 2006 Aug 30.

PMID:
16944278
8.

Animal models for glutaryl-CoA dehydrogenase deficiency.

Koeller DM, Sauer S, Wajner M, de Mello CF, Goodman SI, Woontner M, Mühlhausen C, Okun JG, Kölker S.

J Inherit Metab Dis. 2004;27(6):813-8.

PMID:
15505386
9.

Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency.

Sauer SW.

J Inherit Metab Dis. 2007 Oct;30(5):673-80. Epub 2007 Sep 21.

PMID:
17879145
10.

Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I.

Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, Troncoso M, Mühlhausen C, Zschocke J, Boy NP, Hoffmann GF, Garbade SF, Kölker S.

Brain. 2009 Jul;132(Pt 7):1764-82. doi: 10.1093/brain/awp112. Epub 2009 May 11.

PMID:
19433437
11.

Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.

Busanello EN, Fernandes CG, Martell RV, Lobato VG, Goodman S, Woontner M, de Souza DO, Wajner M.

J Neurol Sci. 2014 Nov 15;346(1-2):260-7. doi: 10.1016/j.jns.2014.09.003. Epub 2014 Sep 16.

PMID:
25241940
12.

Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

Thies B, Meyer-Schwesinger C, Lamp J, Schweizer M, Koeller DM, Ullrich K, Braulke T, Mühlhausen C.

Biochim Biophys Acta. 2013 Oct;1832(10):1463-72. doi: 10.1016/j.bbadis.2013.04.019. Epub 2013 Apr 24.

13.

Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells.

Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Mühlhausen C.

J Biol Chem. 2011 May 20;286(20):17777-84. doi: 10.1074/jbc.M111.232744. Epub 2011 Mar 29.

14.

Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.

Biagosch C, Ediga RD, Hensler SV, Faerberboeck M, Kuehn R, Wurst W, Meitinger T, Kölker S, Sauer S, Prokisch H.

Biochim Biophys Acta. 2017 Sep;1863(9):2220-2228. doi: 10.1016/j.bbadis.2017.05.018. Epub 2017 May 22.

PMID:
28545977
15.

Compliance to clinical guidelines determines outcome in glutaric aciduria type I in the era of newborn screening.

Höliner I, Simma B, Reiter A, Sass JO, Zschocke J, Huemer M.

Klin Padiatr. 2010 Jan-Feb;222(1):35-7. doi: 10.1055/s-0029-1239525. Epub 2010 Jan 18.

PMID:
20084589
16.

Lysine intake and neurotoxicity in glutaric aciduria type I: towards a rationale for therapy?

Kölker S, Sauer SW, Okun JG, Hoffmann GF, Koeller DM.

Brain. 2006 Aug;129(Pt 8):e54. No abstract available.

PMID:
16870879
17.

Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.

Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M.

Brain Res. 2015 Sep 16;1620:116-29. doi: 10.1016/j.brainres.2015.05.013. Epub 2015 May 18.

PMID:
25998543
18.

Riboflavin-responsive glutaryl CoA dehydrogenase deficiency.

Chalmers RA, Bain MD, Zschocke J.

Mol Genet Metab. 2006 May;88(1):29-37.

PMID:
16377226
19.

Subependymal mass lesions and peripheral polyneuropathy in adult-onset glutaric aciduria type I.

Herskovitz M, Goldsher D, Sela BA, Mandel H.

Neurology. 2013 Aug 27;81(9):849-50. doi: 10.1212/WNL.0b013e3182a2cbf2. Epub 2013 Jul 24.

PMID:
23884036
20.

Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice: possible implications for the neuropathology of glutaric acidemia type I.

Lagranha VL, Matte U, de Carvalho TG, Seminotti B, Pereira CC, Koeller DM, Woontner M, Goodman SI, de Souza DO, Wajner M.

PLoS One. 2014 Mar 4;9(3):e90477. doi: 10.1371/journal.pone.0090477. eCollection 2014.

Supplemental Content

Support Center