Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Stress-concentrating effect of resorption lacunae in trabecular bone.

McNamara LM, Van der Linden JC, Weinans H, Prendergast PJ.

J Biomech. 2006;39(4):734-41.

PMID:
16439243
2.

Simulation of vertebral trabecular bone loss using voxel finite element analysis.

Mc Donnell P, Harrison N, Liebschner MA, Mc Hugh PE.

J Biomech. 2009 Dec 11;42(16):2789-96. doi: 10.1016/j.jbiomech.2009.07.038. Epub 2009 Sep 26.

PMID:
19782987
3.

Fatigue microdamage in bovine trabecular bone.

Moore TL, Gibson LJ.

J Biomech Eng. 2003 Dec;125(6):769-76.

PMID:
14986400
4.

Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.

Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R.

J Biomech. 1999 Apr;32(4):443-51.

PMID:
10213036
5.

Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.

Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R.

J Biomech. 1999 Feb;32(2):165-73. Corrected and republished in: J Biomech. 1999 Apr;32(4):443-51.

PMID:
10052922
6.

Creep does not contribute to fatigue in bovine trabecular bone.

Moore TL, O'Brien FJ, Gibson LJ.

J Biomech Eng. 2004 Jun;126(3):321-9.

PMID:
15341168
7.

Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load.

Judex S, Boyd S, Qin YX, Turner S, Ye K, Müller R, Rubin C.

Ann Biomed Eng. 2003 Jan;31(1):12-20.

PMID:
12572652
8.
9.
10.

Fatigue of bovine trabecular bone.

Moore TL, Gibson LJ.

J Biomech Eng. 2003 Dec;125(6):761-8.

PMID:
14986399
11.

Trabecular bone microdamage and microstructural stresses under uniaxial compression.

Nagaraja S, Couse TL, Guldberg RE.

J Biomech. 2005 Apr;38(4):707-16.

PMID:
15713291
12.

Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia.

Cawley DT, Kelly N, Simpkin A, Shannon FJ, McGarry JP.

Clin Biomech (Bristol, Avon). 2012 May;27(4):390-7. doi: 10.1016/j.clinbiomech.2011.10.011. Epub 2011 Nov 12.

PMID:
22079691
13.

Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone.

Yeni YN, Hou FJ, Ciarelli T, Vashishth D, Fyhrie DP.

Ann Biomed Eng. 2003 Jun;31(6):726-32.

PMID:
12797623
14.

Finite element modeling of damage accumulation in trabecular bone under cyclic loading.

Guo XE, McMahon TA, Keaveny TM, Hayes WC, Gibson LJ.

J Biomech. 1994 Feb;27(2):145-55.

PMID:
8132682
15.

Influence of marginal bone resorption on stress around an implant--a three-dimensional finite element analysis.

Kitamura E, Stegaroiu R, Nomura S, Miyakawa O.

J Oral Rehabil. 2005 Apr;32(4):279-86.

PMID:
15790383
16.

Tension and bending, but not compression alone determine the functional adaptation of subchondral bone in incongruous joints.

Eckstein F, Merz B, Schön M, Jacobs CR, Putz R.

Anat Embryol (Berl). 1999 Jan;199(1):85-97.

PMID:
9924938
17.
19.

Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing.

McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, Prendergast PJ.

Bone. 2006 Aug;39(2):392-400. Epub 2006 Apr 27.

PMID:
16644297
20.

Biaxial failure behavior of bovine tibial trabecular bone.

Niebur GL, Feldstein MJ, Keaveny TM.

J Biomech Eng. 2002 Dec;124(6):699-705.

PMID:
12596638

Supplemental Content

Support Center