Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 268

1.

A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses.

Huang Y, Englehart KB, Hudgins B, Chan AD.

IEEE Trans Biomed Eng. 2005 Nov;52(11):1801-11.

PMID:
16285383
2.

Support vector machine-based classification scheme for myoelectric control applied to upper limb.

Oskoei MA, Hu H.

IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65. doi: 10.1109/TBME.2008.919734.

PMID:
18632358
3.

A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.

Karlik B, Tokhi MO, Alci M.

IEEE Trans Biomed Eng. 2003 Nov;50(11):1255-61.

PMID:
14619995
4.

Optimized Gaussian mixture models for upper limb motion classification.

Huang Y, Englehart KB, Hudgins B, Chan AD.

Conf Proc IEEE Eng Med Biol Soc. 2004;1:72-5.

PMID:
17271606
5.

Conjugate-prior-penalized learning of Gaussian mixture models for multifunction myoelectric hand control.

Chu JU, Lee YJ.

IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):287-97. doi: 10.1109/TNSRE.2009.2015177. Epub 2009 Feb 18.

PMID:
19228565
6.

Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis.

Hargrove LJ, Scheme EJ, Englehart KB, Hudgins BS.

IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):49-57. doi: 10.1109/TNSRE.2009.2039590. Epub 2010 Jan 12.

PMID:
20071277
7.

Continuous myoelectric control for powered prostheses using hidden Markov models.

Chan AD, Englehart KB.

IEEE Trans Biomed Eng. 2005 Jan;52(1):121-4.

PMID:
15651571
8.

Surface myoelectric signal classification for prostheses control.

Al-Assaf Y, Al-Nashash H.

J Med Eng Technol. 2005 Sep-Oct;29(5):203-7.

PMID:
16126579
9.

A control system for a powered prosthesis using positional and myoelectric inputs from the shoulder complex.

Losier Y, Englehart K, Hudgins B.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6138-41.

PMID:
18003416
10.

Selective classification for improved robustness of myoelectric control under nonideal conditions.

Scheme EJ, Englehart KB, Hudgins BS.

IEEE Trans Biomed Eng. 2011 Jun;58(6):1698-705. doi: 10.1109/TBME.2011.2113182. Epub 2011 Feb 10.

PMID:
21317073
11.

A robust, real-time control scheme for multifunction myoelectric control.

Englehart K, Hudgins B.

IEEE Trans Biomed Eng. 2003 Jul;50(7):848-54.

PMID:
12848352
12.

A wavelet-based continuous classification scheme for multifunction myoelectric control.

Englehart K, Hudgins B, Parker PA.

IEEE Trans Biomed Eng. 2001 Mar;48(3):302-11.

PMID:
11327498
13.
14.

Channel and feature selection in multifunction myoelectric control.

Khushaba RN, Al-Jumaily A.

Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5182-5.

PMID:
18003175
15.

Online electromyographic control of a robotic prosthesis.

Shenoy P, Miller KJ, Crawford B, Rao RN.

IEEE Trans Biomed Eng. 2008 Mar;55(3):1128-35. doi: 10.1109/TBME.2007.909536.

PMID:
18334405
16.

Myoelectric signal processing for control of powered limb prostheses.

Parker P, Englehart K, Hudgins B.

J Electromyogr Kinesiol. 2006 Dec;16(6):541-8. Epub 2006 Oct 11. Review.

PMID:
17045489
17.

Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.

Hargrove LJ, Li G, Englehart KB, Hudgins BS.

IEEE Trans Biomed Eng. 2009 May;56(5):1407-14. doi: 10.1109/TBME.2008.2008171.

PMID:
19473932
18.

Ant colony optimization-based feature selection method for surface electromyography signals classification.

Huang H, Xie HB, Guo JY, Chen HJ.

Comput Biol Med. 2012 Jan;42(1):30-8. doi: 10.1016/j.compbiomed.2011.10.004. Epub 2011 Nov 8.

PMID:
22074763
19.
20.

Supplemental Content

Support Center