Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman.

Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA.

Science. 2005 Nov 11;310(5750):1006-9.

2.

Vibrationally coherent photochemistry in the femtosecond primary event of vision.

Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV.

Science. 1994 Oct 21;266(5184):422-4.

PMID:
7939680
3.

Chemistry. Following the flow of energy in biomolecules.

Champion PM.

Science. 2005 Nov 11;310(5750):980-2. No abstract available.

4.

Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin.

Kochendoerfer GG, Verdegem PJ, van der Hoef I, Lugtenburg J, Mathies RA.

Biochemistry. 1996 Dec 17;35(50):16230-40.

PMID:
8973196
5.

The first step in vision: femtosecond isomerization of rhodopsin.

Schoenlein RW, Peteanu LA, Mathies RA, Shank CV.

Science. 1991 Oct 18;254(5030):412-5.

PMID:
1925597
6.

Conical intersection dynamics of the primary photoisomerization event in vision.

Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G.

Nature. 2010 Sep 23;467(7314):440-3. doi: 10.1038/nature09346.

PMID:
20864998
7.

Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.

Herbst J, Heyne K, Diller R.

Science. 2002 Aug 2;297(5582):822-5.

8.

Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.

Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J.

J Am Chem Soc. 2016 Apr 13;138(14):4757-62. doi: 10.1021/jacs.5b12251. Epub 2016 Mar 30.

PMID:
26999496
9.

Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin.

Smitienko OA, Mozgovaya MN, Shelaev IV, Gostev FE, Feldman TB, Nadtochenko VA, Sarkisov OM, Ostrovsky MA.

Biochemistry (Mosc). 2010 Jan;75(1):25-35.

PMID:
20331421
10.

Local vibrational coherences drive the primary photochemistry of vision.

Johnson PJ, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Miller RJ.

Nat Chem. 2015 Dec;7(12):980-6. doi: 10.1038/nchem.2398. Epub 2015 Nov 16.

PMID:
26587713
11.

Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.

Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ.

J Biol Chem. 2004 Nov 12;279(46):48102-11. Epub 2004 Aug 20.

12.

Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation.

Hayashi S, Tajkhorshid E, Schulten K.

Biophys J. 2009 Jan;96(2):403-16. doi: 10.1016/j.bpj.2008.09.049.

13.

Photoisomerization in rhodopsin.

Kandori H, Shichida Y, Yoshizawa T.

Biochemistry (Mosc). 2001 Nov;66(11):1197-209. Review.

14.

Retinal chromophore of rhodopsin photoisomerizes within picoseconds.

Hayward G, Carlsen W, Siegman A, Stryer L.

Science. 1981 Feb 27;211(4485):942-4.

PMID:
7466366
15.

Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.

Rupenyan A, van Stokkum IH, Arents JC, van Grondelle R, Hellingwerf KJ, Groot ML.

J Phys Chem B. 2009 Dec 17;113(50):16251-6. doi: 10.1021/jp9065289.

PMID:
19928893
16.

Wavelength dependent cis-trans isomerization in vision.

Kim JE, Tauber MJ, Mathies RA.

Biochemistry. 2001 Nov 20;40(46):13774-8.

17.

Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy.

Rupenyan A, van Stokkum IH, Arents JC, van Grondelle R, Hellingwerf K, Groot ML.

Biophys J. 2008 May 15;94(10):4020-30. doi: 10.1529/biophysj.107.121376. Epub 2008 Jan 30.

18.

Product formation in rhodopsin by fast hydrogen motions.

Weingart O, Altoè P, Stenta M, Bottoni A, Orlandi G, Garavelli M.

Phys Chem Chem Phys. 2011 Mar 7;13(9):3645-8. doi: 10.1039/c0cp02496a. Epub 2011 Jan 18.

PMID:
21243153
19.
20.

Supplemental Content

Support Center