Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 654

1.

Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.

Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2006 Apr;70(3):346-57. Epub 2005 Nov 11.

PMID:
16283296
2.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
3.

Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids.

Pandey G, Yoshikawa K, Hirasawa T, Nagahisa K, Katakura Y, Furusawa C, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2007 May;75(2):415-26. Epub 2007 Jan 30.

PMID:
17262206
4.

Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray.

Hirasawa T, Ashitani K, Yoshikawa K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biosci Bioeng. 2006 Dec;102(6):568-71.

PMID:
17270724
5.

Involvement of CIF1 (GGS1/TPS1) in osmotic stress response in Saccharomyces cerevisiae.

Hazell BW, Kletsas S, Nevalainen H, Attfield PV.

FEBS Lett. 1997 Sep 8;414(2):353-8.

6.

Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.

Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H.

Bioprocess Biosyst Eng. 2009 Aug;32(5):681-8. doi: 10.1007/s00449-008-0292-7. Epub 2009 Jan 6.

PMID:
19125301
7.

Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.

Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H.

Yeast. 2009 Mar;26(3):167-84. doi: 10.1002/yea.1659.

8.

Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions.

Backhus LE, DeRisi J, Bisson LF.

FEMS Yeast Res. 2001 Jul;1(2):111-25. Erratum in: FEMS Yeast Res. 2003 Oct;4(1):123.

9.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

10.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
11.

The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling.

Serrano R, Ruiz A, Bernal D, Chambers JR, Ariño J.

Mol Microbiol. 2002 Dec;46(5):1319-33.

12.

Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.

Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2007 Sep;104(3):163-70. Erratum in: J Biosci Bioeng. 2007 Oct;104(4):351.

PMID:
17964478
13.

Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress.

Erasmus DJ, van der Merwe GK, van Vuuren HJ.

FEMS Yeast Res. 2003 Jun;3(4):375-99.

14.

Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.

Yasokawa D, Murata S, Kitagawa E, Iwahashi Y, Nakagawa R, Hashido T, Iwahashi H.

Environ Toxicol. 2008 Oct;23(5):599-606. doi: 10.1002/tox.20406.

PMID:
18528910
15.

Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.

Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A.

J Evol Biol. 2011 May;24(5):1135-53. doi: 10.1111/j.1420-9101.2011.02249.x. Epub 2011 Mar 7.

16.
17.

The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.

Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T.

FEMS Yeast Res. 2008 Sep;8(6):829-38. doi: 10.1111/j.1567-1364.2008.00391.x. Epub 2008 Jul 8.

18.
19.

Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.

Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A.

FEMS Yeast Res. 2008 Nov;8(7):1127-36. doi: 10.1111/j.1567-1364.2008.00397.x. Epub 2008 Jun 12.

20.

Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.

Li BZ, Yuan YJ.

Appl Microbiol Biotechnol. 2010 May;86(6):1915-24. doi: 10.1007/s00253-010-2518-2. Epub 2010 Mar 23.

PMID:
20309542

Supplemental Content

Support Center