Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation.

Arikawa Y, Kobayashi M, Kodaira R, Shimosaka M, Muratsubaki H, Enomoto K, Okazaki M.

J Biosci Bioeng. 1999;87(3):333-9.

PMID:
16232477
2.

Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae.

Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M.

J Biosci Bioeng. 1999;87(1):28-36.

PMID:
16232421
3.
4.

Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain.

Kubo Y, Takagi H, Nakamori S.

J Biosci Bioeng. 2000;90(6):619-24.

PMID:
16232921
5.

Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants.

Asano T, Kurose N, Tarumi S.

J Biosci Bioeng. 2001;92(5):429-33.

PMID:
16233123
6.

Characterization of an alpha-ketoglutarate-resistant sake yeast mutant with high organic acid productivity.

Yano S, Asano T, Kurose N, Hiramatsu J, Shimoi H, Ito K.

J Biosci Bioeng. 2003;96(4):332-6.

PMID:
16233532
7.

Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Hata Y.

J Biosci Bioeng. 2016 Jun;121(6):665-71. doi: 10.1016/j.jbiosc.2015.11.012.

PMID:
26983942
8.

Isolation of sake yeast mutants producing a high level of ethyl caproate and/or isoamyl acetate.

Arikawa Y, Yamada M, Shimosaka M, Okazaki M, Fukuzawa M.

J Biosci Bioeng. 2000;90(6):675-7.

PMID:
16232931
9.

Isolation and characterization of sake yeast mutants deficient in gamma-aminobutyric acid utilization in sake brewing.

Takahashi T, Furukawa A, Hara S, Mizoguchi H.

J Biosci Bioeng. 2004;97(6):412-8.

PMID:
16233652
10.

Isolation and characterization of a high-acetate-producing sake yeast Saccharomyces cerevisiae.

Kurita O, Nakabayashi T, Saitho K.

J Biosci Bioeng. 2003;95(1):65-71.

PMID:
16233368
11.

Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

Wu H, Watanabe T, Araki Y, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jun;107(6):636-40. doi: 10.1016/j.jbiosc.2009.01.014.

PMID:
19447341
12.

Effect of the FAA1 gene disruption of sake yeast on the accumulation of ethyl caproate in sake mash.

Asano T, Kawadu M, Kurose N, Tarumi S, Kawakita S.

J Biosci Bioeng. 2000;89(6):609-11.

PMID:
16232807
14.

Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity.

Kotaka A, Sahara H, Kondo A, Ueda M, Hata Y.

Appl Microbiol Biotechnol. 2009 Feb;82(2):387-95. doi: 10.1007/s00253-008-1833-3.

PMID:
19137286
16.

Succinate transport in Rhizobium leguminosarum.

Finan TM, Wood JM, Jordan DC.

J Bacteriol. 1981 Oct;148(1):193-202.

17.

The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene.

Kotaka A, Sahara H, Hata Y.

J Biosci Bioeng. 2010 Dec;110(6):675-8. doi: 10.1016/j.jbiosc.2010.07.007.

PMID:
20708434
18.

Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.

Kitamoto K, Oda K, Gomi K, Takahashi K.

Appl Environ Microbiol. 1991 Jan;57(1):301-6.

19.

Improvement of isoamyl acetate productivity in sake yeast by isolating mutants resistant to econazole.

Asano T, Inoue T, Kurose N, Hiraoka N, Kawakita S.

J Biosci Bioeng. 1999;87(5):697-9.

PMID:
16232541
20.

Enhanced citrate production through gene insertion in Aspergillus niger.

de Jongh WA, Nielsen J.

Metab Eng. 2008 Mar;10(2):87-96.

PMID:
18162426
Items per page

Supplemental Content

Support Center