Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Functional profiling: from microarrays via cell-based assays to novel tumor relevant modulators of the cell cycle.

Arlt D, Huber W, Liebel U, Schmidt C, Majety M, Sauermann M, Rosenfelder H, Bechtel S, Mehrle A, Bannasch D, Schupp I, Seiler M, Simpson JC, Hahne F, Moosmayer P, Ruschhaupt M, Guilleaume B, Wellenreuther R, Pepperkok R, Sültmann H, Poustka A, Wiemann S.

Cancer Res. 2005 Sep 1;65(17):7733-42.

2.

Alterations in cell cycle genes in early stage lung adenocarcinoma identified by expression profiling.

Singhal S, Amin KM, Kruklitis R, DeLong P, Friscia ME, Litzky LA, Putt ME, Kaiser LR, Albelda SM.

Cancer Biol Ther. 2003 May-Jun;2(3):291-8.

PMID:
12878869
3.

Microarray analysis identifies differentially expressed genes induced by human papillomavirus type 18 E6 silencing RNA.

Min W, Wen-li M, Zhao-hui S, Ling L, Bao Z, Wen-ling Z.

Int J Gynecol Cancer. 2009 May;19(4):547-63. doi: 10.1111/IGC.0b013e3181a44c68.

PMID:
19509549
4.

Quantitative proteomic and genomic profiling reveals metastasis-related protein expression patterns in gastric cancer cells.

Chen YR, Juan HF, Huang HC, Huang HH, Lee YJ, Liao MY, Tseng CW, Lin LL, Chen JY, Wang MJ, Chen JH, Chen YJ.

J Proteome Res. 2006 Oct;5(10):2727-42.

PMID:
17022644
5.

Activation of MAP kinase signaling through ERK5 but not ERK1 expression is associated with lymph node metastases in oral squamous cell carcinoma (OSCC).

Sticht C, Freier K, Knöpfle K, Flechtenmacher C, Pungs S, Hofele C, Hahn M, Joos S, Lichter P.

Neoplasia. 2008 May;10(5):462-70.

6.

Detecting biological associations between genes based on the theory of phase synchronization.

Kim CS, Riikonen P, Salakoski T.

Biosystems. 2008 May;92(2):99-113. doi: 10.1016/j.biosystems.2007.12.006. Epub 2008 Jan 11.

PMID:
18289772
7.

Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues.

Aouacheria A, Navratil V, Barthelaix A, Mouchiroud D, Gautier C.

BMC Genomics. 2006 Apr 26;7:94.

8.

High-resolution global profiling of genomic alterations with long oligonucleotide microarray.

Brennan C, Zhang Y, Leo C, Feng B, Cauwels C, Aguirre AJ, Kim M, Protopopov A, Chin L.

Cancer Res. 2004 Jul 15;64(14):4744-8.

9.

The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes.

Cayrol C, Lacroix C, Mathe C, Ecochard V, Ceribelli M, Loreau E, Lazar V, Dessen P, Mantovani R, Aguilar L, Girard JP.

Blood. 2007 Jan 15;109(2):584-94. Epub 2006 Sep 26.

10.

Cross platform microarray analysis for robust identification of differentially expressed genes.

Bosotti R, Locatelli G, Healy S, Scacheri E, Sartori L, Mercurio C, Calogero R, Isacchi A.

BMC Bioinformatics. 2007 Mar 8;8 Suppl 1:S5.

11.

DNA microarrays, a novel approach in studies of chromatin structure.

Widłak P.

Acta Biochim Pol. 2004;51(1):1-8. Review.

12.

Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis.

Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ.

Cancer Res. 2006 May 15;66(10):5278-86.

13.

Microarray-based DNA profiling to study genomic aberrations.

Waddell N.

IUBMB Life. 2008 Jul;60(7):437-40. doi: 10.1002/iub.57. Review.

14.

P53-responsive genes and the potential for cancer diagnostics and therapeutics development.

Xu H, el-Gewely MR.

Biotechnol Annu Rev. 2001;7:131-64. Review.

PMID:
11686042
15.

Targets of genome copy number reduction in primary breast cancers identified by integrative genomics.

Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK, Sii LH, Ito K, Tan B, Wu J, Tay A, Tan KC, Ang E, Tan BK, Tan PH, Ito Y, Tan P.

Genes Chromosomes Cancer. 2007 Mar;46(3):288-301.

PMID:
17171680
16.

Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling.

Kawakami K, Enokida H, Tachiwada T, Gotanda T, Tsuneyoshi K, Kubo H, Nishiyama K, Takiguchi M, Nakagawa M, Seki N.

Oncol Rep. 2006 Sep;16(3):521-31.

PMID:
16865252
17.

Transcriptome profiling and network pathway analysis of genes associated with invasive phenotype in oral cancer.

Kang CJ, Chen YJ, Liao CT, Wang HM, Chang JT, Lin CY, Lee LY, Wang TH, Yen TC, Shen CR, Chen IH, Chiu CC, Cheng AJ.

Cancer Lett. 2009 Nov 1;284(2):131-40. doi: 10.1016/j.canlet.2009.04.014. Epub 2009 May 19.

PMID:
19457608
18.
19.

Integrative genomics based identification of potential human hepatocarcinogenesis-associated cell cycle regulators: RHAMM as an example.

Yang CW, Su JY, Tsou AP, Chau GY, Liu HL, Chen CH, Chien CY, Chou CK.

Biochem Biophys Res Commun. 2005 May 6;330(2):489-97.

PMID:
15796909
20.

Screening for genes associated with ovarian cancer prognosis.

Chang XH, Zhang L, Yang R, Feng J, Cheng YX, Cheng HY, Ye X, Fu TY, Cui H.

Chin Med J (Engl). 2009 May 20;122(10):1167-72.

PMID:
19493465

Supplemental Content

Support Center