Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 280


Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing.

Sharp JA, Fouts ET, Krawitz DC, Kaufman PD.

Curr Biol. 2001 Apr 3;11(7):463-73.


Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.

Jiao Y, Seeger K, Lautrette A, Gaubert A, Mousson F, Guerois R, Mann C, Ochsenbein F.

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2866-71. doi: 10.1073/pnas.1106023109. Epub 2012 Feb 9.


Replication-independent histone deposition by the HIR complex and Asf1.

Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD.

Curr Biol. 2005 Nov 22;15(22):2044-9.


Genetic interaction of RAD53 protein kinase with histones is important for DNA replication.

Holzen TM, Sclafani R.

Cell Cycle. 2010 Dec 1;9(23):4735-47. Epub 2010 Dec 1.


The Ddc1-Mec3-Rad17 sliding clamp regulates histone-histone chaperone interactions and DNA replication-coupled nucleosome assembly in budding yeast.

Burgess RJ, Han J, Zhang Z.

J Biol Chem. 2014 Apr 11;289(15):10518-29. doi: 10.1074/jbc.M114.552463. Epub 2014 Feb 25.


Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast.

Longhese MP, Paciotti V, Neecke H, Lucchini G.

Genetics. 2000 Aug;155(4):1577-91.


Functional conservation and specialization among eukaryotic anti-silencing function 1 histone chaperones.

Tamburini BA, Carson JJ, Adkins MW, Tyler JK.

Eukaryot Cell. 2005 Sep;4(9):1583-90.


The C terminus of the histone chaperone Asf1 cross-links to histone H3 in yeast and promotes interaction with histones H3 and H4.

Dennehey BK, Noone S, Liu WH, Smith L, Churchill ME, Tyler JK.

Mol Cell Biol. 2013 Feb;33(3):605-21. doi: 10.1128/MCB.01053-12. Epub 2012 Nov 26.


Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1.

Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH.

Mol Cell. 2001 Jan;7(1):13-20.


Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

Tsabar M, Waterman DP, Aguilar F, Katsnelson L, Eapen VV, Memisoglu G, Haber JE.

Genes Dev. 2016 May 15;30(10):1211-24. doi: 10.1101/gad.280685.116.


Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling.

Lee SJ, Schwartz MF, Duong JK, Stern DF.

Mol Cell Biol. 2003 Sep;23(17):6300-14.


CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.

Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP.

PLoS Biol. 2010 Jan 26;8(1):e1000286. doi: 10.1371/journal.pbio.1000286.


A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1.

Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP.

Mol Cell Biol. 2004 Dec;24(23):10126-44.


Molecular basis of the essential s phase function of the rad53 checkpoint kinase.

Hoch NC, Chen ES, Buckland R, Wang SC, Fazio A, Hammet A, Pellicioli A, Chabes A, Tsai MD, Heierhorst J.

Mol Cell Biol. 2013 Aug;33(16):3202-13. doi: 10.1128/MCB.00474-13. Epub 2013 Jun 10.


Asf1 links Rad53 to control of chromatin assembly.

Hu F, Alcasabas AA, Elledge SJ.

Genes Dev. 2001 May 1;15(9):1061-6.


Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants.

Kats ES, Albuquerque CP, Zhou H, Kolodner RD.

Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3710-5. Epub 2006 Feb 24.

Supplemental Content

Support Center