Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.
2.
3.

Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha.

Beeby M, Cho M, Stubbe J, Jensen GJ.

J Bacteriol. 2012 Mar;194(5):1092-9. doi: 10.1128/JB.06125-11. Epub 2011 Dec 16.

4.

New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16.

Bresan S, Jendrossek D.

Appl Environ Microbiol. 2017 May 31;83(12). pii: e00505-17. doi: 10.1128/AEM.00505-17. Print 2017 Jun 15.

5.

Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological-biochemical properties and growth of Ralstonia eutropha.

Volova TG, Zhila NO, Kalacheva GS, Brigham CJ, Sinskey AJ.

Res Microbiol. 2013 Feb-Mar;164(2):164-71. doi: 10.1016/j.resmic.2012.10.008. Epub 2012 Oct 23.

PMID:
23089257
6.

Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in ralstonia eutropha H16.

Kuchta K, Chi L, Fuchs H, Pötter M, Steinbüchel A.

Biomacromolecules. 2007 Feb;8(2):657-62.

PMID:
17291089
7.

PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.

Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D.

BMC Microbiol. 2012 Nov 16;12:262. doi: 10.1186/1471-2180-12-262.

8.

Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.

Handrick R, Reinhardt S, Jendrossek D.

J Bacteriol. 2000 Oct;182(20):5916-8.

9.
10.

Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo.

Cho M, Brigham CJ, Sinskey AJ, Stubbe J.

Biochemistry. 2012 Mar 20;51(11):2276-88. doi: 10.1021/bi2013596. Epub 2012 Mar 7.

11.

Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.

Sznajder A, Pfeiffer D, Jendrossek D.

Appl Environ Microbiol. 2015 Mar;81(5):1847-58. doi: 10.1128/AEM.03791-14. Epub 2014 Dec 29.

12.

Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy.

Porter M, Yu J.

J Microbiol Methods. 2011 Oct;87(1):49-55. doi: 10.1016/j.mimet.2011.07.009. Epub 2011 Jul 23.

PMID:
21801758
14.

Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16.

Pötter M, Madkour MH, Mayer F, Steinbüchel A.

Microbiology. 2002 Aug;148(Pt 8):2413-26.

PMID:
12177335
15.

Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.

Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ.

J Bacteriol. 2010 Oct;192(20):5319-28. doi: 10.1128/JB.00207-10. Epub 2010 Aug 20.

16.

Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K.

PLoS One. 2013 Oct 24;8(10):e78528. doi: 10.1371/journal.pone.0078528. eCollection 2013.

17.
18.

Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation.

Jurasek L, Marchessault RH.

Appl Microbiol Biotechnol. 2004 Jun;64(5):611-7. Epub 2004 Feb 3. Review.

PMID:
14758517
19.

Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16.

Pfeiffer D, Jendrossek D.

Microbiology. 2011 Oct;157(Pt 10):2795-807. doi: 10.1099/mic.0.051508-0. Epub 2011 Jul 7.

PMID:
21737497
20.

Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16.

Tumlirsch T, Sznajder A, Jendrossek D.

Appl Environ Microbiol. 2015 Dec;81(24):8277-93. doi: 10.1128/AEM.02279-15. Epub 2015 Sep 25.

Supplemental Content

Support Center