Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 546

1.
2.

Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.

Madu IG, Roth SL, Belouzard S, Whittaker GR.

J Virol. 2009 Aug;83(15):7411-21. doi: 10.1128/JVI.00079-09. Epub 2009 May 13.

3.

Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein.

Sainz B Jr, Mossel EC, Gallaher WR, Wimley WC, Peters CJ, Wilson RB, Garry RF.

Virus Res. 2006 Sep;120(1-2):146-55. Epub 2006 Apr 17.

4.

Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion.

Petit CM, Melancon JM, Chouljenko VN, Colgrove R, Farzan M, Knipe DM, Kousoulas KG.

Virology. 2005 Oct 25;341(2):215-30. Epub 2005 Aug 15.

5.

Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors.

Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, Jiang S.

Lancet. 2004 Mar 20;363(9413):938-47.

PMID:
15043961
6.

The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry.

Sainz B Jr, Rausch JM, Gallaher WR, Garry RF, Wimley WC.

Biochemistry. 2005 Jan 25;44(3):947-58.

PMID:
15654751
7.

Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus.

Xu Y, Zhu J, Liu Y, Lou Z, Yuan F, Liu Y, Cole DK, Ni L, Su N, Qin L, Li X, Bai Z, Bell JI, Pang H, Tien P, Gao GF, Rao Z.

Biochemistry. 2004 Nov 9;43(44):14064-71.

PMID:
15518555
8.

Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors.

Zhu J, Xiao G, Xu Y, Yuan F, Zheng C, Liu Y, Yan H, Cole DK, Bell JI, Rao Z, Tien P, Gao GF.

Biochem Biophys Res Commun. 2004 Jun 18;319(1):283-8.

PMID:
15158473
9.

Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state.

Hakansson-McReynolds S, Jiang S, Rong L, Caffrey M.

J Biol Chem. 2006 Apr 28;281(17):11965-71. Epub 2006 Feb 28.

10.
11.
12.

Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

Peisajovich SG, Samuel O, Shai Y.

J Mol Biol. 2000 Mar 10;296(5):1353-65.

PMID:
10698638
13.
14.
15.

Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site.

Rodríguez-Crespo I, Núñez E, Yélamos B, Gómez-Gutiérrez J, Albar JP, Peterson DL, Gavilanes F.

Virology. 1999 Aug 15;261(1):133-42.

16.
17.

A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus.

Schwegmann-Wessels C, Al-Falah M, Escors D, Wang Z, Zimmer G, Deng H, Enjuanes L, Naim HY, Herrler G.

J Biol Chem. 2004 Oct 15;279(42):43661-6. Epub 2004 Aug 10.

18.

SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.

Madu IG, Belouzard S, Whittaker GR.

Virology. 2009 Oct 25;393(2):265-71. doi: 10.1016/j.virol.2009.07.038. Epub 2009 Aug 29.

19.

Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein.

Guillén J, Kinnunen PK, Villalaín J.

Biochim Biophys Acta. 2008 Dec;1778(12):2765-74. doi: 10.1016/j.bbamem.2008.07.021. Epub 2008 Aug 5.

Supplemental Content

Support Center