Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 373

1.

Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models.

O'Donoghue JA, Zanzonico P, Pugachev A, Wen B, Smith-Jones P, Cai S, Burnazi E, Finn RD, Burgman P, Ruan S, Lewis JS, Welch MJ, Ling CC, Humm JL.

Int J Radiat Oncol Biol Phys. 2005 Apr 1;61(5):1493-502.

PMID:
15817355
2.

Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer.

Dence CS, Ponde DE, Welch MJ, Lewis JS.

Nucl Med Biol. 2008 Aug;35(6):713-20. doi: 10.1016/j.nucmedbio.2008.06.001.

3.

Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone).

Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW.

J Nucl Med. 2006 Jun;47(6):989-98.

4.

A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers.

Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts SA.

J Nucl Med. 2014 Mar;55(3):515-21. doi: 10.2967/jnumed.113.126615.

5.

Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia.

McCall KC, Humm JL, Bartlett R, Reese M, Carlin S.

Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):e393-9. doi: 10.1016/j.ijrobp.2012.05.005.

6.

Comparison of 18F-fluoroazomycin-arabinofuranoside and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) in preclinical models of cancer.

Valtorta S, Belloli S, Sanvito F, Masiello V, Di Grigoli G, Monterisi C, Fazio F, Picchio M, Moresco RM.

J Nucl Med. 2013 Jul;54(7):1106-12. doi: 10.2967/jnumed.112.111120.

7.

The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography.

Matsumoto K, Szajek L, Krishna MC, Cook JA, Seidel J, Grimes K, Carson J, Sowers AL, English S, Green MV, Bacharach SL, Eckelman WC, Mitchell JB.

Int J Oncol. 2007 Apr;30(4):873-81.

PMID:
17332926
8.

A limited overlap between intratumoral distribution of 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole and copper-diacetyl-bis[N(4)-methylthiosemicarbazone].

Furukawa T, Yuan Q, Jin ZH, Aung W, Yoshii Y, Hasegawa S, Endo H, Inoue M, Zhang MR, Fujibayashi Y, Saga T.

Oncol Rep. 2015 Sep;34(3):1379-87. doi: 10.3892/or.2015.4079.

PMID:
26134305
9.

64Cu-ATSM Reflects pO2 Levels in Human Head and Neck Cancer Xenografts but Not in Colorectal Cancer Xenografts: Comparison with 64CuCl2.

Li F, Jørgensen JT, Forman J, Hansen AE, Kjaer A.

J Nucl Med. 2016 Mar;57(3):437-43. doi: 10.2967/jnumed.115.155663.

10.

(64)Cu-ATSM and (18)FDG PET uptake and (64)Cu-ATSM autoradiography in spontaneous canine tumors: comparison with pimonidazole hypoxia immunohistochemistry.

Hansen AE, Kristensen AT, Jørgensen JT, McEvoy FJ, Busk M, van der Kogel AJ, Bussink J, Engelholm SA, Kjær A.

Radiat Oncol. 2012 Jun 15;7:89. doi: 10.1186/1748-717X-7-89.

11.

Prognostic significance of hypoxic PET using (18)F-FAZA and (62)Cu-ATSM in non-small-cell lung cancer.

Kinoshita T, Fujii H, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H.

Lung Cancer. 2016 Jan;91:56-66. doi: 10.1016/j.lungcan.2015.11.020.

PMID:
26711935
12.

Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model.

Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ.

J Nucl Med. 1999 Jan;40(1):177-83.

13.

Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinoma model.

Oh M, Tanaka T, Kobayashi M, Furukawa T, Mori T, Kudo T, Fujieda S, Fujibayashi Y.

Nucl Med Biol. 2009 May;36(4):419-26. doi: 10.1016/j.nucmedbio.2009.01.016.

PMID:
19423010
14.

Spatiotemporal stability of Cu-ATSM and FLT positron emission tomography distributions during radiation therapy.

Bradshaw TJ, Yip S, Jallow N, Forrest LJ, Jeraj R.

Int J Radiat Oncol Biol Phys. 2014 Jun 1;89(2):399-405. doi: 10.1016/j.ijrobp.2014.02.016.

15.

Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO--a selected review.

Bourgeois M, Rajerison H, Guerard F, Mougin-Degraef M, Barbet J, Michel N, Cherel M, Faivre-Chauvet A.

Nucl Med Rev Cent East Eur. 2011;14(2):90-5. Review.

16.

Cardiac hypoxia imaging: second-generation analogues of 64Cu-ATSM.

Handley MG, Medina RA, Mariotti E, Kenny GD, Shaw KP, Yan R, Eykyn TR, Blower PJ, Southworth R.

J Nucl Med. 2014 Mar;55(3):488-94. doi: 10.2967/jnumed.113.129015.

17.

64Cu-ATSM Hypoxia Positron Emission Tomography for Detection of Conduit Ischemia in an Experimental Rat Esophagectomy Model.

Park SY, Kang WJ, Cho A, Chae JR, Cho YL, Kim JY, Lee JW, Chung KY.

PLoS One. 2015 Jun 22;10(6):e0131083. doi: 10.1371/journal.pone.0131083.

18.

Animal-specific positioning molds for registration of repeat imaging studies: comparative microPET imaging of F18-labeled fluoro-deoxyglucose and fluoro-misonidazole in rodent tumors.

Zanzonico P, Campa J, Polycarpe-Holman D, Forster G, Finn R, Larson S, Humm J, Ling C.

Nucl Med Biol. 2006 Jan;33(1):65-70.

PMID:
16459260
19.

Pathophysiologic correlation between 62Cu-ATSM and 18F-FDG in lung cancer.

Lohith TG, Kudo T, Demura Y, Umeda Y, Kiyono Y, Fujibayashi Y, Okazawa H.

J Nucl Med. 2009 Dec;50(12):1948-53. doi: 10.2967/jnumed.109.069021.

20.

Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia.

Cho H, Ackerstaff E, Carlin S, Lupu ME, Wang Y, Rizwan A, O'Donoghue J, Ling CC, Humm JL, Zanzonico PB, Koutcher JA.

Neoplasia. 2009 Mar;11(3):247-59, 2p following 259.

Supplemental Content

Support Center