Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation.

Serganov A, Keiper S, Malinina L, Tereshko V, Skripkin E, Höbartner C, Polonskaia A, Phan AT, Wombacher R, Micura R, Dauter Z, Jäschke A, Patel DJ.

Nat Struct Mol Biol. 2005 Mar;12(3):218-24. Epub 2005 Feb 20.

2.

The structural basis of ribozyme-catalyzed RNA assembly.

Robertson MP, Scott WG.

Science. 2007 Mar 16;315(5818):1549-53.

3.

Three critical hydrogen bonds determine the catalytic activity of the Diels-Alderase ribozyme.

Kraut S, Bebenroth D, Nierth A, Kobitski AY, Nienhaus GU, Jäschke A.

Nucleic Acids Res. 2012 Feb;40(3):1318-30. doi: 10.1093/nar/gkr812. Epub 2011 Oct 5.

4.

Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

Keiper S, Bebenroth D, Seelig B, Westhof E, Jäschke A.

Chem Biol. 2004 Sep;11(9):1217-27.

5.

Transition state stabilization by a catalytic RNA.

Rupert PB, Massey AP, Sigurdsson ST, Ferré-D'Amaré AR.

Science. 2002 Nov 15;298(5597):1421-4. Epub 2002 Oct 10.

6.

Structural basis of glmS ribozyme activation by glucosamine-6-phosphate.

Klein DJ, Ferré-D'Amaré AR.

Science. 2006 Sep 22;313(5794):1752-6.

7.
8.

RNA-catalysed carbon-carbon bond formation.

Tarasow TM, Tarasow SL, Eaton BE.

Nature. 1997 Sep 4;389(6646):54-7.

PMID:
9288965
9.

Aminoacyl esterase activity of the Tetrahymena ribozyme.

Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR.

Science. 1992 Jun 5;256(5062):1420-4.

PMID:
1604316
10.

Crystal structure of the catalytic core of an RNA-polymerase ribozyme.

Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP.

Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.

11.
12.

Allosterically activated Diels-Alder catalysis by a ribozyme.

Helm M, Petermeier M, Ge B, Fiammengo R, Jäschke A.

J Am Chem Soc. 2005 Aug 3;127(30):10492-3.

PMID:
16045328
13.

Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme.

Mlýnský V, Banás P, Hollas D, Réblová K, Walter NG, Sponer J, Otyepka M.

J Phys Chem B. 2010 May 20;114(19):6642-52. doi: 10.1021/jp1001258.

14.

Ribozyme-catalysed carbon-carbon bond formation.

Jäschke A, Stuhlmann F, Bebenroth D, Keiper S, Wombacher R.

Biochem Soc Trans. 2002 Nov;30(Pt 6):1137-40. Review.

PMID:
12440990
15.
16.

Controlling the rate of organic reactions: rational design of allosteric Diels-Alderase ribozymes.

Amontov S, Jäschke A.

Nucleic Acids Res. 2006;34(18):5032-8. Epub 2006 Sep 20.

17.

Catalytic strategies of self-cleaving ribozymes.

Cochrane JC, Strobel SA.

Acc Chem Res. 2008 Aug;41(8):1027-35. doi: 10.1021/ar800050c. Epub 2008 Jul 25. Review.

PMID:
18652494
18.

Structure and function converge to identify a hydrogen bond in a group I ribozyme active site.

Forconi M, Sengupta RN, Liu MC, Sartorelli AC, Piccirilli JA, Herschlag D.

Angew Chem Int Ed Engl. 2009;48(39):7171-5. doi: 10.1002/anie.200903006. No abstract available.

19.
20.

Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis.

Rupert PB, Ferré-D'Amaré AR.

Nature. 2001 Apr 12;410(6830):780-6.

PMID:
11298439

Supplemental Content

Support Center