Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 342

1.

Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD.

Nature. 2005 Feb 17;433(7027):749-54.

PMID:
15716953
2.

Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.

Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S.

Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.

3.

Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.

Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW.

Nature. 2003 Jul 3;424(6944):76-81. Epub 2003 Jun 15.

4.

Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.

Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, Seeliger M, Biel M, Humphries P, Douglas RH, Wenzel A, Foster RG, Hankins MW, Lucas RJ.

Vis Neurosci. 2004 Sep-Oct;21(5):675-83.

PMID:
15683556
5.

A retinal ganglion cell that can signal irradiance continuously for 10 hours.

Wong KY.

J Neurosci. 2012 Aug 15;32(33):11478-85. doi: 10.1523/JNEUROSCI.1423-12.2012.

6.

A neuronal circuit for colour vision based on rod-cone opponency.

Joesch M, Meister M.

Nature. 2016 Apr 14;532(7598):236-9. doi: 10.1038/nature17158. Epub 2016 Apr 6.

PMID:
27049951
7.

Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.

Procyk CA, Eleftheriou CG, Storchi R, Allen AE, Milosavljevic N, Brown TM, Lucas RJ.

J Neurophysiol. 2015 Aug;114(2):1321-30. doi: 10.1152/jn.00368.2015. Epub 2015 Jun 17.

8.

Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle.

Zhao X, Pack W, Khan NW, Wong KY.

J Neurosci. 2016 Apr 13;36(15):4209-17. doi: 10.1523/JNEUROSCI.2629-14.2016.

9.

Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance.

Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Güler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ.

Neuron. 2010 May 13;66(3):417-28. doi: 10.1016/j.neuron.2010.04.037.

10.

A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus.

Allen AE, Brown TM, Lucas RJ.

J Neurosci. 2011 Nov 16;31(46):16833-43. doi: 10.1523/JNEUROSCI.2505-11.2011.

11.

Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.

Chen SK, Chew KS, McNeill DS, Keeley PW, Ecker JL, Mao BQ, Pahlberg J, Kim B, Lee SC, Fox MA, Guido W, Wong KY, Sampath AP, Reese BE, Kuruvilla R, Hattar S.

Neuron. 2013 Feb 6;77(3):503-15. doi: 10.1016/j.neuron.2012.11.028.

12.

How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock.

Lucas RJ, Lall GS, Allen AE, Brown TM.

Prog Brain Res. 2012;199:1-18. doi: 10.1016/B978-0-444-59427-3.00001-0. Review.

PMID:
22877656
13.

Melanopsin-derived visual responses under light adapted conditions in the mouse dLGN.

Davis KE, Eleftheriou CG, Allen AE, Procyk CA, Lucas RJ.

PLoS One. 2015 Mar 30;10(3):e0123424. doi: 10.1371/journal.pone.0123424. eCollection 2015.

14.

M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.

Prigge CL, Yeh PT, Liou NF, Lee CC, You SF, Liu LL, McNeill DS, Chew KS, Hattar S, Chen SK, Zhang DQ.

J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.

15.
16.

Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.

Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM.

J Neurosci. 2009 Jul 1;29(26):8372-87. doi: 10.1523/JNEUROSCI.1218-09.2009.

17.

Non-image-forming ocular photoreception in vertebrates.

Fu Y, Liao HW, Do MT, Yau KW.

Curr Opin Neurobiol. 2005 Aug;15(4):415-22. Review.

18.

C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.

Somasundaram P, Wyrick GR, Fernandez DC, Ghahari A, Pinhal CM, Simmonds Richardson M, Rupp AC, Cui L, Wu Z, Brown RL, Badea TC, Hattar S, Robinson PR.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2741-2746. doi: 10.1073/pnas.1611893114. Epub 2017 Feb 21.

19.

Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).

Dkhissi-Benyahya O, Szel A, Degrip WJ, Cooper HM.

J Comp Neurol. 2001 Oct 1;438(4):490-504.

PMID:
11559903
20.

Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development.

Rosa JM, Morrie RD, Baertsch HC, Feller MB.

J Neurosci. 2016 Sep 14;36(37):9683-95. doi: 10.1523/JNEUROSCI.3824-15.2016.

Supplemental Content

Support Center