Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 214

1.

Light adaptation, rods, and the human cone flicker ERG.

Peachey NS, Alexander KR, Derlacki DJ, Fishman GA.

Vis Neurosci. 1992 Feb;8(2):145-50.

PMID:
1558826
2.

Rapid and slow changes in the human cone electroretinogram during light and dark adaptation.

Peachey NS, Arakawa K, Alexander KR, Marchese AL.

Vision Res. 1992 Nov;32(11):2049-53.

PMID:
1304082
3.

Visual adaptation and the cone flicker electroretinogram.

Peachey NS, Alexander KR, Fishman GA.

Invest Ophthalmol Vis Sci. 1991 Apr;32(5):1517-22.

PMID:
2016133
4.

Light adaptation and the luminance-response function of the cone electroretinogram.

Peachey NS, Alexander KR, Derlacki DJ, Fishman GA.

Doc Ophthalmol. 1992;79(4):363-9.

PMID:
1633746
5.
6.

20-Hz flicker stimulus can isolate the cone function in rat retina.

Goto Y, Yasuda T, Tobimatsu S, Kato M.

Ophthalmic Res. 1998;30(6):368-73.

PMID:
9731118
7.

Properties of rat cone-mediated electroretinograms during light adaptation.

Goto Y, Tobimatsu S, Shigematsu J, Akazawa K, Kato M.

Curr Eye Res. 1999 Sep;19(3):248-53.

PMID:
10487963
8.

[Adaptational changes in cone electroretinograms in man].

Iijima H, Yamaguchi S.

Nippon Ganka Gakkai Zasshi. 1990 Nov;94(11):987-92. Japanese.

PMID:
2075875
9.

Cone phototransduction and growth of the ERG b-wave during light adaptation.

Alexander KR, Raghuram A, Rajagopalan AS.

Vision Res. 2006 Oct;46(22):3941-8. Epub 2006 Jun 5.

10.

Influence of rod adaptation upon cone responses to light offset in humans: I. Results in normal observers.

Frumkes TE, Lange G, Denny N, Beczkowska I.

Vis Neurosci. 1992 Feb;8(2):83-9.

PMID:
1558830
11.

Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram.

Park JC, Cao D, Collison FT, Fishman GA, McAnany JJ.

Doc Ophthalmol. 2015 Apr;130(2):111-9. doi: 10.1007/s10633-015-9480-3. Epub 2015 Jan 13.

12.

The contribution of human cone photoreceptors to the photopic flicker electroretinogram.

Verma R, Pianta MJ.

J Vis. 2009 Mar 13;9(3):9.1-12. doi: 10.1167/9.3.9.

PMID:
19757948
13.

Stimulation of rods can increase cone flicker ERGs in man.

Arden GB, Frumkes TE.

Vision Res. 1986;26(5):711-21.

PMID:
3750851
14.

Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.

McAnany JJ, Park JC, Collison FT, Fishman GA, Stone EM.

Doc Ophthalmol. 2016 Aug;133(1):61-70. doi: 10.1007/s10633-016-9551-0. Epub 2016 Jul 1.

PMID:
27369766
15.

Dependence of cone b-wave implicit time on rod amplitude in retinitis pigmentosa.

Birch DG, Sandberg MA.

Vision Res. 1987;27(7):1105-12.

PMID:
3660664
16.

Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse.

Lei B.

PLoS One. 2012;7(8):e43856. doi: 10.1371/journal.pone.0043856. Epub 2012 Aug 24.

17.

Rod influence on cone flicker detection: variation with retinal eccentricity.

Alexander KR, Fishman GA.

Vision Res. 1986;26(6):827-34.

PMID:
3750866
18.

The influence of cone adaptation upon rod mediated flicker.

Frumkes TE, Naarendorp F, Goldberg SH.

Vision Res. 1986;26(8):1167-76.

PMID:
3026085
19.

Changes in the harmonic components of the flicker electroretinogram during light adaptation.

McAnany JJ, Nolan PR.

Doc Ophthalmol. 2014 Aug;129(1):1-8. doi: 10.1007/s10633-014-9437-y. Epub 2014 May 1.

PMID:
24788470
20.

Procedures for routine clinical electroretinography (ERG) in dogs.

Schaeppi U, Liverani F.

Agents Actions. 1977 Sep;7(3):347-51.

PMID:
596319

Supplemental Content

Support Center