Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Sculpting the proteome with AAA(+) proteases and disassembly machines.

Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, Baker TA.

Cell. 2004 Oct 1;119(1):9-18. Review.

2.

Machines of destruction - AAA+ proteases and the adaptors that control them.

Gur E, Ottofueling R, Dougan DA.

Subcell Biochem. 2013;66:3-33. doi: 10.1007/978-94-007-5940-4_1. Review.

PMID:
23479435
3.

Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.

Martin A, Baker TA, Sauer RT.

Mol Cell. 2008 Feb 29;29(4):441-50. doi: 10.1016/j.molcel.2008.02.002.

4.

[Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins].

Kedzierska S.

Postepy Biochem. 2006;52(3):330-8. Review. Polish.

PMID:
17201069
5.

An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases.

Augustin S, Gerdes F, Lee S, Tsai FT, Langer T, Tatsuta T.

Mol Cell. 2009 Sep 11;35(5):574-85. doi: 10.1016/j.molcel.2009.07.018.

6.

AAA+ molecular machines: firing on all cylinders.

Ades SE.

Curr Biol. 2006 Jan 24;16(2):R46-8. No abstract available.

7.

Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

Yamasaki T, Nakazaki Y, Yoshida M, Watanabe YH.

FEBS J. 2011 Jul;278(13):2395-403. doi: 10.1111/j.1742-4658.2011.08167.x. Epub 2011 May 31.

8.

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

Yamasaki T, Oohata Y, Nakamura T, Watanabe YH.

J Biol Chem. 2015 Apr 10;290(15):9789-800. doi: 10.1074/jbc.M114.617696. Epub 2015 Feb 24.

9.

AAA+ proteases: ATP-fueled machines of protein destruction.

Sauer RT, Baker TA.

Annu Rev Biochem. 2011;80:587-612. doi: 10.1146/annurev-biochem-060408-172623. Review.

PMID:
21469952
10.

trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication.

Zeymer C, Fischer S, Reinstein J.

J Biol Chem. 2014 Nov 21;289(47):32965-76. doi: 10.1074/jbc.M114.608828. Epub 2014 Sep 24.

11.

Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB.

Nagy M, Wu HC, Liu Z, Kedzierska-Mieszkowska S, Zolkiewski M.

Protein Sci. 2009 Feb;18(2):287-93. doi: 10.1002/pro.36.

12.

Proteolysis in bacterial regulatory circuits.

Gottesman S.

Annu Rev Cell Dev Biol. 2003;19:565-87. Review.

PMID:
14570582
13.

AAA-ATPases at the crossroads of protein life and death.

Zwickl P, Baumeister W.

Nat Cell Biol. 1999 Aug;1(4):E97-8. No abstract available.

PMID:
10559933
14.

ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae.

Van Dyck L, Langer T.

Cell Mol Life Sci. 1999 Nov 30;56(9-10):825-42. Review.

PMID:
11212342
15.

Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines.

Martin A, Baker TA, Sauer RT.

Nature. 2005 Oct 20;437(7062):1115-20.

PMID:
16237435
16.
17.

Structure and mechanism of the Hsp90 molecular chaperone machinery.

Pearl LH, Prodromou C.

Annu Rev Biochem. 2006;75:271-94. Review.

PMID:
16756493
18.

Evolutionary relationships and structural mechanisms of AAA+ proteins.

Erzberger JP, Berger JM.

Annu Rev Biophys Biomol Struct. 2006;35:93-114. Review.

PMID:
16689629
19.

Coupling AAA protein function to regulated gene expression.

Joly N, Zhang N, Buck M, Zhang X.

Biochim Biophys Acta. 2012 Jan;1823(1):108-16. doi: 10.1016/j.bbamcr.2011.08.012. Epub 2011 Aug 31. Review.

20.

Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.

Baytshtok V, Baker TA, Sauer RT.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5377-82. doi: 10.1073/pnas.1505881112. Epub 2015 Apr 13.

Supplemental Content

Support Center