Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 380

1.

Reverse methanogenesis: testing the hypothesis with environmental genomics.

Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF.

Science. 2004 Sep 3;305(5689):1457-62.

2.

Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California.

Goffredi SK, Wilpiszeski R, Lee R, Orphan VJ.

ISME J. 2008 Feb;2(2):204-20. doi: 10.1038/ismej.2007.103. Epub 2008 Jan 24.

PMID:
18219285
3.

Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.

Meulepas RJ, Jagersma CG, Gieteling J, Buisman CJ, Stams AJ, Lens PN.

Biotechnol Bioeng. 2009 Oct 15;104(3):458-70. doi: 10.1002/bit.22412.

PMID:
19544305
4.

Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.

Dekas AE, Poretsky RS, Orphan VJ.

Science. 2009 Oct 16;326(5951):422-6. doi: 10.1126/science.1178223.

5.

Insights into the genomes of archaea mediating the anaerobic oxidation of methane.

Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R, Amann R.

Environ Microbiol. 2005 Dec;7(12):1937-51.

PMID:
16309392
6.

Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.

Lloyd KG, Alperin MJ, Teske A.

Environ Microbiol. 2011 Sep;13(9):2548-64. doi: 10.1111/j.1462-2920.2011.02526.x. Epub 2011 Aug 2.

PMID:
21806748
7.

Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.

Jagersma GC, Meulepas RJ, Heikamp-de Jong I, Gieteling J, Klimiuk A, Schouten S, Damsté JS, Lens PN, Stams AJ.

Environ Microbiol. 2009 Dec;11(12):3223-32. doi: 10.1111/j.1462-2920.2009.02036.x. Epub 2009 Aug 24.

PMID:
19703218
8.

Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.

Nauhaus K, Treude T, Boetius A, Krüger M.

Environ Microbiol. 2005 Jan;7(1):98-106.

PMID:
15643940
9.

A marine microbial consortium apparently mediating anaerobic oxidation of methane.

Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O.

Nature. 2000 Oct 5;407(6804):623-6.

PMID:
11034209
10.

Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.

Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF.

Appl Environ Microbiol. 2001 Apr;67(4):1922-34.

11.

Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.

Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF.

Science. 2001 Jul 20;293(5529):484-7.

12.

Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea.

Dang H, Luan XW, Chen R, Zhang X, Guo L, Klotz MG.

FEMS Microbiol Ecol. 2010 Jun;72(3):370-85. doi: 10.1111/j.1574-6941.2010.00870.x. Epub 2010 Mar 25.

13.

Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea.

Lazar CS, Dinasquet J, L'Haridon S, Pignet P, Toffin L.

Antonie Van Leeuwenhoek. 2011 Nov;100(4):639-53. doi: 10.1007/s10482-011-9620-z. Epub 2011 Jul 13.

PMID:
21751028
14.

Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.

Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR.

Environ Microbiol. 2012 Oct;14(10):2726-40. doi: 10.1111/j.1462-2920.2012.02825.x. Epub 2012 Jul 25.

PMID:
22827909
15.

Microbial community structure in three deep-sea carbonate crusts.

Heijs SK, Aloisi G, Bouloubassi I, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, van Elsas JD, Forney LJ.

Microb Ecol. 2006 Oct;52(3):451-62. Epub 2006 Aug 15.

PMID:
16909345
16.

Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan.

Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U, Nunoura T, Imachi H, Takai K.

Appl Environ Microbiol. 2009 Nov;75(22):7153-62. doi: 10.1128/AEM.01184-09. Epub 2009 Sep 25.

17.

Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.

Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A.

Environ Microbiol. 2008 Sep;10(9):2287-98. doi: 10.1111/j.1462-2920.2008.01653.x. Epub 2008 May 21.

PMID:
18498367
18.

Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

Wasmund K, Kurtböke DI, Burns KA, Bourne DG.

FEMS Microbiol Ecol. 2009 May;68(2):142-51. doi: 10.1111/j.1574-6941.2009.00667.x.

19.

Microbial methane production in deep aquifer associated with the accretionary prism in Japan.

Kimura H, Nashimoto H, Shimizu M, Hattori S, Yamada K, Koba K, Yoshida N, Kato K.

ISME J. 2010 Apr;4(4):531-41. doi: 10.1038/ismej.2009.132. Epub 2009 Dec 3.

PMID:
19956275
20.

Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania.

Alain K, Holler T, Musat F, Elvert M, Treude T, Krüger M.

Environ Microbiol. 2006 Apr;8(4):574-90.

PMID:
16584470

Supplemental Content

Support Center