Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains.

Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ.

Mol Cell. 2004 Aug 27;15(4):535-48.

2.

Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3.

Zhang J, Macartney T, Peggie M, Cohen P.

Biochem J. 2017 Jun 26;474(13):2235-2248. doi: 10.1042/BCJ20170288.

3.

Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling.

Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K.

EMBO J. 2003 Dec 1;22(23):6277-88.

4.

Direct activation of protein kinases by unanchored polyubiquitin chains.

Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ.

Nature. 2009 Sep 3;461(7260):114-9. doi: 10.1038/nature08247. Epub 2009 Aug 12.

5.

TAK1-dependent signaling requires functional interaction with TAB2/TAB3.

Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG.

J Biol Chem. 2007 Feb 9;282(6):3918-28. Epub 2006 Dec 8.

6.

Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3.

Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S.

EMBO J. 2009 Dec 16;28(24):3903-9. doi: 10.1038/emboj.2009.345.

7.

Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs.

Ori D, Kato H, Sanjo H, Tartey S, Mino T, Akira S, Takeuchi O.

J Immunol. 2013 Apr 15;190(8):4037-45. doi: 10.4049/jimmunol.1300173. Epub 2013 Mar 15.

8.

Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6.

Mizukami J, Takaesu G, Akatsuka H, Sakurai H, Ninomiya-Tsuji J, Matsumoto K, Sakurai N.

Mol Cell Biol. 2002 Feb;22(4):992-1000.

9.
10.

TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB.

Prickett TD, Ninomiya-Tsuji J, Broglie P, Muratore-Schroeder TL, Shabanowitz J, Hunt DF, Brautigan DL.

J Biol Chem. 2008 Jul 11;283(28):19245-54. doi: 10.1074/jbc.M800943200. Epub 2008 May 2.

11.

RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation.

Tian Y, Zhang Y, Zhong B, Wang YY, Diao FC, Wang RP, Zhang M, Chen DY, Zhai ZH, Shu HB.

J Biol Chem. 2007 Jun 8;282(23):16776-82. Epub 2007 Apr 20.

12.

WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway.

Gao D, Wang R, Li B, Yang Y, Zhai Z, Chen DY.

Cell Mol Life Sci. 2009 Aug;66(15):2573-84. doi: 10.1007/s00018-009-0059-6. Epub 2009 Jun 12.

PMID:
19521662
13.

TAB3, a new binding partner of the protein kinase TAK1.

Cheung PC, Nebreda AR, Cohen P.

Biochem J. 2004 Feb 15;378(Pt 1):27-34.

14.

ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress.

Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V.

Mol Cell. 2010 Oct 8;40(1):75-86. doi: 10.1016/j.molcel.2010.09.010.

16.

TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway.

Kishida S, Sanjo H, Akira S, Matsumoto K, Ninomiya-Tsuji J.

Genes Cells. 2005 May;10(5):447-54.

17.

TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo.

Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S.

Genes Dev. 2005 Nov 15;19(22):2668-81. Epub 2005 Oct 31.

18.

TAB2, TRAF6 and TAK1 are involved in NF-kappaB activation induced by the TNF-receptor, Edar and its adaptator Edaradd.

Morlon A, Munnich A, Smahi A.

Hum Mol Genet. 2005 Dec 1;14(23):3751-7. Epub 2005 Oct 26.

PMID:
16251197
19.

TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway.

Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K.

Mol Cell. 2000 Apr;5(4):649-58.

20.

Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation.

Zhang L, Ding X, Cui J, Xu H, Chen J, Gong YN, Hu L, Zhou Y, Ge J, Lu Q, Liu L, Chen S, Shao F.

Nature. 2011 Dec 11;481(7380):204-8. doi: 10.1038/nature10690.

PMID:
22158122

Supplemental Content

Support Center