Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer.

Rubin MA, Varambally S, Beroukhim R, Tomlins SA, Rhodes DR, Paris PL, Hofer MD, Storz-Schweizer M, Kuefer R, Fletcher JA, Hsi BL, Byrne JA, Pienta KJ, Collins C, Sellers WR, Chinnaiyan AM.

Cancer Res. 2004 Jun 1;64(11):3814-22.

2.

PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer.

Wang R, Xu J, Saramäki O, Visakorpi T, Sutherland WM, Zhou J, Sen B, Lim SD, Mabjeesh N, Amin M, Dong JT, Petros JA, Nelson PS, Marshall FF, Zhau HE, Chung LW.

Cancer Res. 2004 Mar 1;64(5):1589-94.

3.

Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer.

Byrne JA, Balleine RL, Schoenberg Fejzo M, Mercieca J, Chiew YE, Livnat Y, St Heaps L, Peters GB, Byth K, Karlan BY, Slamon DJ, Harnett P, Defazio A.

Int J Cancer. 2005 Dec 20;117(6):1049-54.

4.

Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene?

Byrne JA, Frost S, Chen Y, Bright RK.

Tumour Biol. 2014 Aug;35(8):7369-82. doi: 10.1007/s13277-014-2006-x. Epub 2014 May 6. Review.

PMID:
24798974
5.

Amplification and overexpression of vinculin are associated with increased tumour cell proliferation and progression in advanced prostate cancer.

Ruiz C, Holz DR, Oeggerli M, Schneider S, Gonzales IM, Kiefer JM, Zellweger T, Bachmann A, Koivisto PA, Helin HJ, Mousses S, Barrett MT, Azorsa DO, Bubendorf L.

J Pathol. 2011 Mar;223(4):543-52. doi: 10.1002/path.2828. Epub 2011 Jan 5.

PMID:
21294127
6.

Tumor protein D52 (isoform 3) contributes to prostate cancer cell growth via targeting nuclear factor-κB transactivation in LNCaP cells.

Dasari C, Yaghnam DP, Walther R, Ummanni R.

Tumour Biol. 2017 May;39(5):1010428317698382. doi: 10.1177/1010428317698382.

PMID:
28466782
7.

Amplification of 8q21 in breast cancer is independent of MYC and associated with poor patient outcome.

Choschzick M, Lassen P, Lebeau A, Marx AH, Terracciano L, Heilenkötter U, Jaenicke F, Bokemeyer C, Izbicki J, Sauter G, Simon R.

Mod Pathol. 2010 Apr;23(4):603-10. doi: 10.1038/modpathol.2010.5. Epub 2010 Feb 5.

8.

Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells.

Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C, Giebel J, Walther R.

FEBS J. 2008 Nov;275(22):5703-13. doi: 10.1111/j.1742-4658.2008.06697.x.

9.

Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer.

Reiter RE, Sato I, Thomas G, Qian J, Gu Z, Watabe T, Loda M, Jenkins RB.

Genes Chromosomes Cancer. 2000 Jan;27(1):95-103.

PMID:
10564591
10.

RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer.

Porkka KP, Tammela TL, Vessella RL, Visakorpi T.

Genes Chromosomes Cancer. 2004 Jan;39(1):1-10.

PMID:
14603436
11.

microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression.

Han G, Fan M, Zhang X.

Biochem Biophys Res Commun. 2015 Jan 16;456(3):804-9. doi: 10.1016/j.bbrc.2014.12.026. Epub 2014 Dec 13.

PMID:
25511701
12.

Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer.

Savinainen KJ, Linja MJ, Saramäki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T.

Br J Cancer. 2004 Mar 8;90(5):1041-6.

13.

High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer.

van Duin M, van Marion R, Vissers K, Watson JE, van Weerden WM, Schröder FH, Hop WC, van der Kwast TH, Collins C, van Dekken H.

Genes Chromosomes Cancer. 2005 Dec;44(4):438-49.

PMID:
16130124
14.

Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival.

Murphy AJ, Hughes CA, Barrett C, Magee H, Loftus B, O'Leary JJ, Sheils O.

Cancer Res. 2007 Mar 15;67(6):2893-8.

15.

Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNA microarrays.

Porkka K, Saramäki O, Tanner M, Visakorpi T.

Lab Invest. 2002 May;82(5):629-37.

PMID:
12004003
16.

8q24 amplification is associated with Myc expression and prostate cancer progression and is an independent predictor of recurrence after radical prostatectomy.

Fromont G, Godet J, Peyret A, Irani J, Celhay O, Rozet F, Cathelineau X, Cussenot O.

Hum Pathol. 2013 Aug;44(8):1617-23. doi: 10.1016/j.humpath.2013.01.012. Epub 2013 Apr 8.

PMID:
23574779
17.

Cloning and characterization of UROC28, a novel gene overexpressed in prostate, breast, and bladder cancers.

An G, Ng AY, Meka CS, Luo G, Bright SP, Cazares L, Wright GL Jr, Veltri RW.

Cancer Res. 2000 Dec 15;60(24):7014-20.

18.

DNA sequence amplification in human prostate cancer identified by chromosome microdissection: potential prognostic implications.

Van Den Berg C, Guan XY, Von Hoff D, Jenkins R, Bittner, Griffin C, Kallioniemi O, Visakorpi, McGill, Herath J, et al.

Clin Cancer Res. 1995 Jan;1(1):11-8.

19.

Construction and application of a full-coverage, high-resolution, human chromosome 8q genomic microarray for comparative genomic hybridization.

van Duin M, van Marion R, Watson JE, Paris PL, Lapuk A, Brown N, Oseroff VV, Albertson DG, Pinkel D, de Jong P, Nacheva EP, Dinjens W, van Dekken H, Collins C.

Cytometry A. 2005;63(1):10-9.

20.

Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping.

Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH.

Cancer Res. 1996 Jul 1;56(13):3091-102.

Supplemental Content

Support Center