Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 199

1.

Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1.

Shen K, Fetter RD, Bargmann CI.

Cell. 2004 Mar 19;116(6):869-81. Erratum in: Cell.2004 May 14;117(4):553.

2.
3.

MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion.

Huang X, Cheng HJ, Tessier-Lavigne M, Jin Y.

Neuron. 2002 May 16;34(4):563-76.

4.

Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis.

Wanner N, Noutsou F, Baumeister R, Walz G, Huber TB, Neumann-Haefelin E.

PLoS One. 2011;6(8):e23598. doi: 10.1371/journal.pone.0023598.

5.

Obedient and wayward synaptic behavior.

Colman DR.

Cell. 2004 Mar 19;116(6):766-7. Review.

6.

Synaptic adhesion molecules.

Yamagata M, Sanes JR, Weiner JA.

Curr Opin Cell Biol. 2003 Oct;15(5):621-32. Review.

PMID:
14519398
7.

Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization.

Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DD.

Mol Cell Neurosci. 2004 Feb;25(2):263-74.

PMID:
15019943
8.

HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans.

Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S, Katsura I.

Cell. 2002 May 31;109(5):639-49.

9.

Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis.

Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D, Otwinowski Z, Walz T, Shen K, Garcia KC.

Cell. 2014 Jan 30;156(3):482-94. doi: 10.1016/j.cell.2014.01.004.

10.

Functional dissection of SYG-1 and SYG-2, cell adhesion molecules required for selective synaptogenesis in C. elegans.

Chao DL, Shen K.

Mol Cell Neurosci. 2008 Oct;39(2):248-57. doi: 10.1016/j.mcn.2008.07.001.

11.

Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans.

Knobel KM, Jorgensen EM, Bastiani MJ.

Development. 1999 Oct;126(20):4489-98.

12.

C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations.

Watari-Goshima N, Ogura K, Wolf FW, Goshima Y, Garriga G.

Nat Neurosci. 2007 Feb;10(2):169-76.

PMID:
17237778
13.

Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination.

Ding M, Chao D, Wang G, Shen K.

Science. 2007 Aug 17;317(5840):947-51.

14.

The evolutionarily conserved gene LNP-1 is required for synaptic vesicle trafficking and synaptic transmission.

Ghila L, Gomez M.

Eur J Neurosci. 2008 Feb;27(3):621-30. doi: 10.1111/j.1460-9568.2008.06049.x.

PMID:
18279315
15.

SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS.

Dai Y, Taru H, Deken SL, Grill B, Ackley B, Nonet ML, Jin Y.

Nat Neurosci. 2006 Dec;9(12):1479-87.

PMID:
17115037
16.

UNC-119 suppresses axon branching in C. elegans.

Knobel KM, Davis WS, Jorgensen EM, Bastiani MJ.

Development. 2001 Oct;128(20):4079-92.

17.

VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans.

Levy-Strumpf N, Culotti JG.

Nat Neurosci. 2007 Feb;10(2):161-8.

PMID:
17237777
18.

A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis.

Neumann-Haefelin E, Kramer-Zucker A, Slanchev K, Hartleben B, Noutsou F, Martin K, Wanner N, Ritter A, Gödel M, Pagel P, Fu X, Müller A, Baumeister R, Walz G, Huber TB.

Hum Mol Genet. 2010 Jun 15;19(12):2347-59. doi: 10.1093/hmg/ddq108.

19.

TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans.

Miyahara K, Suzuki N, Ishihara T, Tsuchiya E, Katsura I.

J Neurobiol. 2004 Feb 15;58(3):392-402.

Items per page

Supplemental Content

Support Center