Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries.

Heaps CL, Parker JL, Sturek M, Bowles DK.

J Appl Physiol (1985). 2004 Jul;97(1):310-6. Epub 2004 Feb 20.

2.

Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries.

Robles JC, Sturek M, Parker JL, Heaps CL.

Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1201-9. doi: 10.1152/ajpheart.00957.2010. Epub 2011 Feb 4.

3.

Sarcoplasmic reticulum Ca(2+) uptake is impaired in coronary smooth muscle distal to coronary occlusion.

Heaps CL, Sturek M, Price EM, Laughlin MH, Parker JL.

Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H223-31.

4.

Altered reactivity of coronary arteries located distal to a chronic coronary occlusion.

Rapps JA, Sturek M, Jones AW, Parker JL.

Am J Physiol. 1997 Oct;273(4 Pt 2):H1879-87.

5.

Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion.

Heaps CL, Sturek M, Rapps JA, Laughlin MH, Parker JL.

Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H1984-92.

6.

Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion.

Zhou M, Widmer RJ, Xie W, Jimmy Widmer A, Miller MW, Schroeder F, Parker JL, Heaps CL.

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1857-69. doi: 10.1152/ajpheart.00754.2009. Epub 2010 Apr 2.

7.

Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training.

Griffin KL, Woodman CR, Price EM, Laughlin MH, Parker JL.

Circulation. 2001 Sep 18;104(12):1393-8.

8.

Ca²⁺ sensitization of cardiac myofilament proteins contributes to exercise training-enhanced myocardial function in a porcine model of chronic occlusion.

Sarin V, Muthuchamy M, Heaps CL.

Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1579-87. doi: 10.1152/ajpheart.00294.2011. Epub 2011 Aug 19.

9.

Mechanisms of altered contractile responses to vasopressin and endothelin in canine coronary collateral arteries.

Rapps JA, Jones AW, Sturek M, Magliola L, Parker JL.

Circulation. 1997 Jan 7;95(1):231-9.

10.
11.

Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation.

Sellke FW, Wang SY, Friedman M, Harada K, Edelman ER, Grossman W, Simons M.

Am J Physiol. 1994 Oct;267(4 Pt 2):H1303-11.

PMID:
7943375
12.

Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion.

Griffin KL, Laughlin MH, Parker JL.

J Appl Physiol (1985). 1999 Nov;87(5):1948-56.

13.
14.

Heterogeneity of L-type calcium current density in coronary smooth muscle.

Bowles DK, Hu Q, Laughlin MH, Sturek M.

Am J Physiol. 1997 Oct;273(4 Pt 2):H2083-9.

15.

Endothelin-1 limits increases in blood flow to native and collateral-dependent myocardium.

Symons JD, Rendig SV, Fu LW, Longhurst JC.

Am J Physiol. 1997 Jul;273(1 Pt 2):R41-8.

PMID:
9249531
16.
17.
18.

Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion.

Fogarty JA, Muller-Delp JM, Delp MD, Mattox ML, Laughlin MH, Parker JL.

Circulation. 2004 Feb 10;109(5):664-70.

19.

Adaptations of the endothelin system after exercise training in a porcine model of ischemic heart disease.

Robles JC, Heaps CL.

Microcirculation. 2015 Jan;22(1):68-78. doi: 10.1111/micc.12174.

20.

Effects of long-term, high-altitude hypoxia on tension and intracellular calcium responses in coronary arteries of fetal and adult sheep.

Kono S, Stiffel VM, Gilbert RD.

J Soc Gynecol Investig. 2006 Jan;13(1):11-8. Epub 2005 Nov 21.

PMID:
16303320

Supplemental Content

Support Center