Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.

Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB.

Nucleic Acids Res. 2004 Feb 18;32(3):1197-207. Print 2004.

2.

Elucidation of an archaeal replication protein network to generate enhanced PCR enzymes.

Motz M, Kober I, Girardot C, Loeser E, Bauer U, Albers M, Moeckel G, Minch E, Voss H, Kilger C, Koegl M.

J Biol Chem. 2002 May 3;277(18):16179-88. Epub 2002 Jan 22.

3.

Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C.

Grúz P, Pisani FM, Shimizu M, Yamada M, Hayashi I, Morikawa K, Nohmi T.

J Biol Chem. 2001 Dec 14;276(50):47394-401. Epub 2001 Oct 1.

4.
6.
8.

Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication.

Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, Kunkel TA, Yang W, Woodgate R.

J Biol Chem. 2004 Jul 30;279(31):32932-40. Epub 2004 May 21.

9.

Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus.

De Felice M, Sensen CW, Charlebois RL, Rossi M, Pisani FM.

J Mol Biol. 1999 Aug 6;291(1):47-57.

PMID:
10438605
11.

Engineering proteins that bind, move, make and break DNA.

Collins CH, Yokobayashi Y, Umeno D, Arnold FH.

Curr Opin Biotechnol. 2003 Aug;14(4):371-8. Review. Erratum in: Curr Opin Biotechnol. 2003 Dec;14(6):665.

PMID:
12943845
12.

Structure-based combinatorial protein engineering (SCOPE).

O'Maille PE, Bakhtina M, Tsai MD.

J Mol Biol. 2002 Aug 23;321(4):677-91.

PMID:
12206782
13.

Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase.

Davidson JF, Fox R, Harris DD, Lyons-Abbott S, Loeb LA.

Nucleic Acids Res. 2003 Aug 15;31(16):4702-9.

14.

The Sso7d DNA-binding protein from Sulfolobus solfataricus has ribonuclease activity.

Shehi E, Serina S, Fumagalli G, Vanoni M, Consonni R, Zetta L, Dehò G, Tortora P, Fusi P.

FEBS Lett. 2001 May 25;497(2-3):131-6. Erratum in: FEBS Lett 2001 Jul 20;501(2-3):177.

15.

Characterization of the 3' exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D.

Jokela M, Eskelinen A, Pospiech H, Rouvinen J, Syväoja JE.

Nucleic Acids Res. 2004 Apr 30;32(8):2430-40. Print 2004.

16.

Heat-mediated activation of affinity-immobilized Taq DNA polymerase.

Nilsson J, Bosnes M, Larsen F, Nygren PA, Uhlén M, Lundeberg J.

Biotechniques. 1997 Apr;22(4):744-51.

PMID:
9105627
17.
18.

Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus.

Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T.

Nat Struct Biol. 2001 Nov;8(11):984-9.

PMID:
11685247
19.

Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.

Schönbrunner NJ, Fiss EH, Budker O, Stoffel S, Sigua CL, Gelfand DH, Myers TW.

Biochemistry. 2006 Oct 24;45(42):12786-95.

PMID:
17042497
20.

An amino acid residue in the middle of the fingers subdomain is involved in Neq DNA polymerase processivity: enhanced processivity of engineered Neq DNA polymerase and its PCR application.

Song JG, Kil EJ, Cho SS, Kim IH, Kwon ST.

Protein Eng Des Sel. 2010 Nov;23(11):835-42. doi: 10.1093/protein/gzq059. Epub 2010 Sep 17.

PMID:
20851826

Supplemental Content

Support Center