Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

2.

Nucleotide binding domains of human CFTR: a structural classification of critical residues and disease-causing mutations.

Eudes R, Lehn P, Férec C, Mornon JP, Callebaut I.

Cell Mol Life Sci. 2005 Sep;62(18):2112-23.

PMID:
16132229
4.
5.

Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains.

Moran O, Galietta LJ, Zegarra-Moran O.

Cell Mol Life Sci. 2005 Feb;62(4):446-60.

PMID:
15719171
6.

A heteromeric complex of the two nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) mediates ATPase activity.

Kidd JF, Ramjeesingh M, Stratford F, Huan LJ, Bear CE.

J Biol Chem. 2004 Oct 1;279(40):41664-9. Epub 2004 Jul 28.

7.

Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces.

Mornon JP, Lehn P, Callebaut I.

Cell Mol Life Sci. 2008 Aug;65(16):2594-612. doi: 10.1007/s00018-008-8249-1.

PMID:
18597042
8.
9.

Domain-domain associations in cystic fibrosis transmembrane conductance regulator.

Wang W, He Z, O'Shaughnessy TJ, Rux J, Reenstra WW.

Am J Physiol Cell Physiol. 2002 May;282(5):C1170-80.

10.

Molecular models of the open and closed states of the whole human CFTR protein.

Mornon JP, Lehn P, Callebaut I.

Cell Mol Life Sci. 2009 Nov;66(21):3469-86. doi: 10.1007/s00018-009-0133-0. Epub 2009 Aug 26.

PMID:
19707853
11.

A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models.

Chen JM, Cutler C, Jacques C, Boeuf G, Denamur E, Lecointre G, Mercier B, Cramb G, Férec C.

Mol Biol Evol. 2001 Sep;18(9):1771-88.

PMID:
11504857
12.

Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.

Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, Maloney PC, Guggino WB, Hunt JF, Emtage S.

J Biol Chem. 2005 Jan 14;280(2):1346-53. Epub 2004 Nov 3.

14.

Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.

Gross CH, Abdul-Manan N, Fulghum J, Lippke J, Liu X, Prabhakar P, Brennan D, Willis MS, Faerman C, Connelly P, Raybuck S, Moore J.

J Biol Chem. 2006 Feb 17;281(7):4058-68. Epub 2005 Dec 16.

15.

Building an understanding of cystic fibrosis on the foundation of ABC transporter structures.

Mendoza JL, Thomas PJ.

J Bioenerg Biomembr. 2007 Dec;39(5-6):499-505.

PMID:
18080175
16.

Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.

Bompadre SG, Li M, Hwang TC.

J Biol Chem. 2008 Feb 29;283(9):5364-9. doi: 10.1074/jbc.M709417200. Epub 2007 Dec 30.

17.

Molecular and functional characterization of CBAVD-causing mutations located in CFTR nucleotide-binding domains.

Grangeia A, Barro-Soria R, Carvalho F, Damas AM, Maurício AC, Kunzelmann K, Barros A, Sousa M.

Cell Physiol Biochem. 2008;22(1-4):79-92. doi: 10.1159/000149785. Epub 2008 Jul 25.

18.

Structure and function of the CFTR chloride channel.

Sheppard DN, Welsh MJ.

Physiol Rev. 1999 Jan;79(1 Suppl):S23-45. Review.

19.

Cystic fibrosis: recent structural insights.

Dorwart M, Thibodeau P, Thomas P.

J Cyst Fibros. 2004 Aug;3 Suppl 2:91-4. Review.

20.

Domain interdependence in the biosynthetic assembly of CFTR.

Cui L, Aleksandrov L, Chang XB, Hou YX, He L, Hegedus T, Gentzsch M, Aleksandrov A, Balch WE, Riordan JR.

J Mol Biol. 2007 Jan 26;365(4):981-94. Epub 2006 Nov 10.

PMID:
17113596

Supplemental Content

Support Center