Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 314

2.

Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety.

Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K.

J Bone Miner Res. 2004 Mar;19(3):343-51. Epub 2003 Dec 22.

3.

Transmission of vertical whole body vibration to the human body.

Kiiski J, Heinonen A, Järvinen TL, Kannus P, Sievänen H.

J Bone Miner Res. 2008 Aug;23(8):1318-25. doi: 10.1359/jbmr.080315.

4.
5.

Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis.

Rubin C, Judex S, Qin YX.

Age Ageing. 2006 Sep;35 Suppl 2:ii32-ii36.

PMID:
16926201
6.

Low magnitude mechanical loading is osteogenic in children with disabling conditions.

Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z.

J Bone Miner Res. 2004 Mar;19(3):360-9. Epub 2004 Jan 27.

7.

In vivo transient vibration assessment of the normal human thoracolumbar spine.

Keller TS, Colloca CJ, Fuhr AW.

J Manipulative Physiol Ther. 2000 Oct;23(8):521-30.

PMID:
11050608
8.

Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation.

Garman R, Gaudette G, Donahue LR, Rubin C, Judex S.

J Orthop Res. 2007 Jun;25(6):732-40.

9.

Regulation of mechanical signals in bone.

Judex S, Gupta S, Rubin C.

Orthod Craniofac Res. 2009 May;12(2):94-104. doi: 10.1111/j.1601-6343.2009.01442.x. Review.

PMID:
19419452
10.

Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults.

Muir J, Kiel DP, Rubin CT.

J Sci Med Sport. 2013 Nov;16(6):526-31. doi: 10.1016/j.jsams.2013.01.004. Epub 2013 Mar 1.

11.

Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD.

Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C.

J Bone Miner Res. 2006 Sep;21(9):1464-74.

12.

Transmission of whole body vibration in children while standing.

Bressel E, Smith G, Branscomb J.

Clin Biomech (Bristol, Avon). 2010 Feb;25(2):181-6. doi: 10.1016/j.clinbiomech.2009.10.016. Epub 2009 Nov 26.

PMID:
19944501
13.

Vibration modes of injured spine at resonant frequencies under vertical vibration.

Guo LX, Zhang M, Zhang YM, Teo EC.

Spine (Phila Pa 1976). 2009 Sep 1;34(19):E682-8. doi: 10.1097/BRS.0b013e3181b1fdf4.

PMID:
19730200
14.

Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S.

Bone. 2002 Mar;30(3):445-52.

PMID:
11882457
15.

Whole-body vibration during passive standing in individuals with spinal cord injury: effects of plate choice, frequency, amplitude, and subject's posture on vibration propagation.

Alizadeh-Meghrazi M, Masani K, Popovic MR, Craven BC.

PM R. 2012 Dec;4(12):963-75. doi: 10.1016/j.pmrj.2012.08.012. Epub 2012 Oct 24.

PMID:
23102716
16.

Determination of vibration-related spinal loads by numerical simulation.

Pankoke S, Hofmann J, Wölfel HP.

Clin Biomech (Bristol, Avon). 2001;16 Suppl 1:S45-56.

PMID:
11275342
17.

Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

Baig HA, Dorman DB, Bulka BA, Shivers BL, Chancey VC, Winkelstein BA.

J Biomech Eng. 2014 Oct;136(10):101002. doi: 10.1115/1.4027998.

PMID:
25010637
18.

Lumbar intradiscal pressure and whole-body vibration--first results.

El-Khatib A, Guillon F.

Clin Biomech (Bristol, Avon). 2001;16 Suppl 1:S127-34.

PMID:
11275350
20.

Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones.

Heini PF, Franz T, Fankhauser C, Gasser B, Ganz R.

Clin Biomech (Bristol, Avon). 2004 Jun;19(5):506-12.

PMID:
15182986

Supplemental Content

Support Center