Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 338

1.
2.

High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope.

Stanciu C, Sackrow M, Meixner AJ.

J Microsc. 2008 Feb;229(Pt 2):247-53. doi: 10.1111/j.1365-2818.2008.01894.x.

3.

A high numerical aperture parabolic mirror as imaging device for confocal microscopy.

Lieb M, Meixner A.

Opt Express. 2001 Mar 26;8(7):458-74.

PMID:
19417842
4.

Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures.

Khonina SN, Volotovsky SG.

J Opt Soc Am A Opt Image Sci Vis. 2010 Oct 1;27(10):2188-97. doi: 10.1364/JOSAA.27.002188.

PMID:
20922009
5.

Probing confined fields with single molecules and vice versa.

Sick B, Hecht B, Wild UP, Novotny L.

J Microsc. 2001 May;202(Pt 2):365-73.

6.

Optical properties of microfabricated fully-metal-coated near-field probes in collection mode.

Descrovi E, Vaccaro L, Aeschimann L, Nakagawa W, Staufer U, Herzig HP.

J Opt Soc Am A Opt Image Sci Vis. 2005 Jul;22(7):1432-41.

PMID:
16053165
7.
8.

Diffraction by a subwavelength-sized aperture in a metal plane.

Shin DJ, Chavez-Pirson A, Kim SH, Jung ST, Lee YH.

J Opt Soc Am A Opt Image Sci Vis. 2001 Jul;18(7):1477-86.

PMID:
11444539
9.

On the optimum form of an aperture for a confinement of the optically excited electric near field.

Bortchagovsky E, Colas des Francs G, Naber A, Fischer UC.

J Microsc. 2008 Feb;229(Pt 2):223-7. doi: 10.1111/j.1365-2818.2008.01890.x.

10.

Focusing of spatially inhomogeneous partially coherent, partially polarized electromagnetic fields.

Foreman MR, Török P.

J Opt Soc Am A Opt Image Sci Vis. 2009 Nov;26(11):2470-9. doi: 10.1364/JOSAA.26.002470.

PMID:
19884950
11.

Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam.

Li X, Venugopalan P, Ren H, Hong M, Gu M.

Opt Lett. 2014 Oct 15;39(20):5961-4. doi: 10.1364/OL.39.005961.

PMID:
25361130
12.

Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.

Yoon YJ, Kim WC, Park NC, Park KS, Park YP.

Opt Lett. 2009 Jul 1;34(13):1961-3.

PMID:
19571966
13.

Polarization characterization in the focal volume of high numerical aperture objectives.

Kang H, Jia B, Gu M.

Opt Express. 2010 May 10;18(10):10813-21. doi: 10.1364/OE.18.010813.

PMID:
20588935
14.

Single molecule mapping of the optical field distribution of probes for near-field microscopy.

Veerman JA, Garcia-Parajo MF, Kuipers L, van Hulst NF.

J Microsc. 1999 May-Jun;194(Pt 2-3):477-82.

15.

Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips.

Bozhevolnyi SI, Langbein W, Hvam JM.

J Microsc. 1999 May-Jun;194(Pt 2-3):500-6.

16.

Tighter focusing with a parabolic mirror.

Stadler J, Stanciu C, Stupperich C, Meixner AJ.

Opt Lett. 2008 Apr 1;33(7):681-3.

PMID:
18382516
17.

Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system.

Sherif SS, Foreman MR, Török P.

Opt Express. 2008 Mar 3;16(5):3397-407.

PMID:
18542431
18.

Focusing of high numerical aperture cylindrical-vector beams.

Youngworth K, Brown T.

Opt Express. 2000 Jul 17;7(2):77-87.

PMID:
19404372
19.

Axial birefringence in high-numerical-aperture optical systems and the light distribution close to focus.

Stallinga S.

J Opt Soc Am A Opt Image Sci Vis. 2001 Nov;18(11):2846-59.

PMID:
11688875
20.

Effect of radial polarization and apodization on spot size under tight focusing conditions.

Lerman GM, Levy U.

Opt Express. 2008 Mar 31;16(7):4567-81.

PMID:
18542554

Supplemental Content

Support Center