Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108


Specificity of activation by phosphoinositides determines lipid regulation of Kir channels.

Rohács T, Lopes CM, Jin T, Ramdya PP, Molnár Z, Logothetis DE.

Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):745-50. Epub 2003 Jan 13.


Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels.

Shumilina E, Klöcker N, Korniychuk G, Rapedius M, Lang F, Baukrowitz T.

J Physiol. 2006 Sep 1;575(Pt 2):433-42. Epub 2006 Jun 15.


Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.

Rapedius M, Soom M, Shumilina E, Schulze D, Schönherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T.

J Biol Chem. 2005 Sep 2;280(35):30760-7. Epub 2005 Jun 24.


Phosphoinositide-mediated gating of inwardly rectifying K(+) channels.

Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A.

Pflugers Arch. 2007 Oct;455(1):83-95. Epub 2007 May 23. Review.


Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif.

Bränström R, Leibiger IB, Leibiger B, Klement G, Nilsson J, Arhem P, Aspinwall CA, Corkey BE, Larsson O, Berggren PO.

Diabetologia. 2007 Aug;50(8):1670-7. Epub 2007 May 24.


Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism.

Takano M, Kuratomi S.

Prog Biophys Mol Biol. 2003 Jan;81(1):67-79. Review.


Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)).

Rosenhouse-Dantsker A, Noskov S, Han H, Adney SK, Tang QY, Rodríguez-Menchaca AA, Kowalsky GB, Petrou VI, Osborn CV, Logothetis DE, Levitan I.

J Biol Chem. 2012 Nov 23;287(48):40266-78. doi: 10.1074/jbc.M111.336339. Epub 2012 Sep 20.


Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides.

Rohács T, Chen J, Prestwich GD, Logothetis DE.

J Biol Chem. 1999 Dec 17;274(51):36065-72.


Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.

Zhang H, He C, Yan X, Mirshahi T, Logothetis DE.

Nat Cell Biol. 1999 Jul;1(3):183-8.


Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel.

Bränström R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O.

J Biol Chem. 1998 Nov 20;273(47):31395-400.


Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.

Raab-Graham KF, Vandenberg CA.

J Biol Chem. 1998 Jul 31;273(31):19699-707.


The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.

Alagem N, Yesylevskyy S, Reuveny E.

Biophys J. 2003 Jul;85(1):300-12.


Inwardly rectifying potassium channels: their molecular heterogeneity and function.

Isomoto S, Kondo C, Kurachi Y.

Jpn J Physiol. 1997 Feb;47(1):11-39. Review.


Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.

Pearson WL, Dourado M, Schreiber M, Salkoff L, Nichols CG.

J Physiol. 1999 Feb 1;514 ( Pt 3):639-53.


Inwardly rectifying potassium channels: their structure, function, and physiological roles.

Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y.

Physiol Rev. 2010 Jan;90(1):291-366. doi: 10.1152/physrev.00021.2009. Review.


Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels.

Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A.

J Biol Chem. 1995 Nov 3;270(44):26086-91.

Supplemental Content

Support Center