Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

2.

Thiamine triphosphatase and the CYTH superfamily of proteins.

Bettendorff L, Wins P.

FEBS J. 2013 Dec;280(24):6443-55. doi: 10.1111/febs.12498. Epub 2013 Sep 10. Review.

3.

A specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism.

Delvaux D, Murty MR, Gabelica V, Lakaye B, Lunin VV, Skarina T, Onopriyenko O, Kohn G, Wins P, De Pauw E, Bettendorff L.

J Biol Chem. 2011 Sep 30;286(39):34023-35. doi: 10.1074/jbc.M111.233585. Epub 2011 Aug 12.

4.
5.

Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins).

Tumlirsch T, Jendrossek D.

Appl Environ Microbiol. 2017 Mar 17;83(7). pii: e03399-16. doi: 10.1128/AEM.03399-16. Print 2017 Apr 1.

PMID:
28130300
6.

Structural determinants of specificity and catalytic mechanism in mammalian 25-kDa thiamine triphosphatase.

Delvaux D, Kerff F, Murty MR, Lakaye B, Czerniecki J, Kohn G, Wins P, Herman R, Gabelica V, Heuze F, Tordoir X, Marée R, Matagne A, Charlier P, De Pauw E, Bettendorff L.

Biochim Biophys Acta. 2013 Oct;1830(10):4513-23. doi: 10.1016/j.bbagen.2013.05.014. Epub 2013 May 22.

PMID:
23707715
8.

Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.

Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L.

J Mol Biol. 2006 Sep 1;361(5):1003-34. Epub 2006 Jul 7.

PMID:
16889794
9.

Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development.

Moeder W, Garcia-Petit C, Ung H, Fucile G, Samuel MA, Christendat D, Yoshioka K.

Plant J. 2013 Nov;76(4):615-26. doi: 10.1111/tpj.12325. Epub 2013 Oct 17.

11.
12.

High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

Kohn G, Delvaux D, Lakaye B, Servais AC, Scholer G, Fillet M, Elias B, Derochette JM, Crommen J, Wins P, Bettendorff L.

PLoS One. 2012;7(9):e43879. doi: 10.1371/journal.pone.0043879. Epub 2012 Sep 12.

13.

Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases.

Sinha SC, Sprang SR.

Rev Physiol Biochem Pharmacol. 2006;157:105-40. Review.

PMID:
17236651
14.

The NYN domains: novel predicted RNAses with a PIN domain-like fold.

Anantharaman V, Aravind L.

RNA Biol. 2006 Jan-Mar;3(1):18-27. Epub 2006 Jan 23.

PMID:
17114934
16.

The adenylyl and guanylyl cyclase superfamily.

Hurley JH.

Curr Opin Struct Biol. 1998 Dec;8(6):770-7. Review.

PMID:
9914257
17.

The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module.

Linder JU.

PLoS One. 2015 Oct 29;10(10):e0141843. doi: 10.1371/journal.pone.0141843. eCollection 2015.

19.

Phosphoesterase domains associated with DNA polymerases of diverse origins.

Aravind L, Koonin EV.

Nucleic Acids Res. 1998 Aug 15;26(16):3746-52.

20.

Crystal structure and regulation mechanisms of the CyaB adenylyl cyclase from the human pathogen Pseudomonas aeruginosa.

Topal H, Fulcher NB, Bitterman J, Salazar E, Buck J, Levin LR, Cann MJ, Wolfgang MC, Steegborn C.

J Mol Biol. 2012 Feb 17;416(2):271-86. doi: 10.1016/j.jmb.2011.12.045. Epub 2011 Dec 28.

Supplemental Content

Support Center