Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 174

1.

Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen.

Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ.

Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14434-9. Epub 2002 Oct 23.

2.

Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content.

Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, Nomura R, Kawabata S, Ooshima T, Nakai K, Hattori M, Hamada S, Nakagawa I.

BMC Genomics. 2009 Aug 5;10:358. doi: 10.1186/1471-2164-10-358.

3.

Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain.

Biswas S, Biswas I.

J Bacteriol. 2012 Sep;194(17):4787-8. doi: 10.1128/JB.01106-12.

4.

Composite resin degradation products from BisGMA monomer modulate the expression of genes associated with biofilm formation and other virulence factors in Streptococcus mutans.

Singh J, Khalichi P, Cvitkovitch DG, Santerre JP.

J Biomed Mater Res A. 2009 Feb;88(2):551-60. doi: 10.1002/jbm.a.31879.

PMID:
18314895
5.

Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.

Tamura S, Yonezawa H, Motegi M, Nakao R, Yoneda S, Watanabe H, Yamazaki T, Senpuku H.

Oral Microbiol Immunol. 2009 Apr;24(2):152-61. doi: 10.1111/j.1399-302X.2008.00489.x.

PMID:
19239643
6.

Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease.

Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couvé E, Lalioui L, Poyart C, Trieu-Cuot P, Kunst F.

Mol Microbiol. 2002 Sep;45(6):1499-513.

7.

The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression.

Khalichi P, Singh J, Cvitkovitch DG, Santerre JP.

Biomaterials. 2009 Feb;30(4):452-9. doi: 10.1016/j.biomaterials.2008.09.053. Epub 2008 Nov 5.

PMID:
18990441
8.

The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.

Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J.

Nat Genet. 2006 Jul;38(7):779-86. Epub 2006 Jun 25.

PMID:
16804543
9.

A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains.

Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP.

BMC Genomics. 2012 Apr 4;13:128. doi: 10.1186/1471-2164-13-128.

10.
11.

Identification and characterization of SMU.244 encoding a putative undecaprenyl pyrophosphate phosphatase protein required for cell wall biosynthesis and bacitracin resistance in Streptococcus mutans.

Jalal N, Tian XL, Dong G, Upham J, Chen C, Parcells M, Li YH.

Microbiology. 2015 Sep;161(9):1857-70. doi: 10.1099/mic.0.000142. Epub 2015 Jul 21.

PMID:
26198853
12.

Genomic variation in Streptococcus mutans: deletions affecting the multiple pathways of beta-glucoside metabolism.

Old LA, Lowes S, Russell RR.

Oral Microbiol Immunol. 2006 Feb;21(1):21-7.

PMID:
16390337
13.

Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans.

Zhang J, Banerjee A, Biswas I.

J Bacteriol. 2009 Feb;191(3):1056-65. doi: 10.1128/JB.01436-08. Epub 2008 Dec 1.

14.

Genome sequence of Streptococcus mutans bacteriophage M102.

van der Ploeg JR.

FEMS Microbiol Lett. 2007 Oct;275(1):130-8. Epub 2007 Aug 15.

16.

Role of RelA of Streptococcus mutans in global control of gene expression.

Nascimento MM, Lemos JA, Abranches J, Lin VK, Burne RA.

J Bacteriol. 2008 Jan;190(1):28-36. Epub 2007 Oct 19.

17.

Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation.

Gong Y, Tian XL, Sutherland T, Sisson G, Mai J, Ling J, Li YH.

Microbiology. 2009 Oct;155(Pt 10):3322-32. doi: 10.1099/mic.0.031591-0. Epub 2009 Jul 16.

PMID:
19608608
18.

LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component.

Merritt J, Kreth J, Shi W, Qi F.

Mol Microbiol. 2005 Aug;57(4):960-9.

19.

Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks.

Smoot JC, Barbian KD, Van Gompel JJ, Smoot LM, Chaussee MS, Sylva GL, Sturdevant DE, Ricklefs SM, Porcella SF, Parkins LD, Beres SB, Campbell DS, Smith TM, Zhang Q, Kapur V, Daly JA, Veasy LG, Musser JM.

Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4668-73. Epub 2002 Mar 26.

20.

Genetic variation in comC, the gene encoding competence-stimulating peptide (CSP) in Streptococcus mutans.

Allan E, Hussain HA, Crawford KR, Miah S, Ascott ZK, Khwaja MH, Hosie AH.

FEMS Microbiol Lett. 2007 Mar;268(1):47-51. Epub 2007 Jan 11.

Supplemental Content

Support Center