Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 124

1.

Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling.

Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, Nakano T, Leavitt AD, Shattil SJ.

Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12819-24. Epub 2002 Sep 18.

2.

Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function.

Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD.

J Thromb Haemost. 2006 Feb;4(2):436-42.

3.

CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets.

Cifuni SM, Wagner DD, Bergmeier W.

Blood. 2008 Sep 1;112(5):1696-703. doi: 10.1182/blood-2008-02-139733. Epub 2008 Jun 10.

4.

Human CalDAG-GEFI deficiency increases bleeding and delays αIIbβ3 activation.

Kato H, Nakazawa Y, Kurokawa Y, Kashiwagi H, Morikawa Y, Morita D, Banno F, Honda S, Kanakura Y, Tomiyama Y.

Blood. 2016 Dec 8;128(23):2729-2733. Epub 2016 Sep 23.

5.

Primary megakaryocytes reveal a role for transcription factor NF-E2 in integrin alpha IIb beta 3 signaling.

Shiraga M, Ritchie A, Aidoudi S, Baron V, Wilcox D, White G, Ybarrondo B, Murphy G, Leavitt A, Shattil S.

J Cell Biol. 1999 Dec 27;147(7):1419-30.

6.

Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3.

Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH.

Curr Biol. 2006 Sep 19;16(18):1796-806.

7.

CalDAG-GEFI is at the nexus of calcium-dependent platelet activation.

Stefanini L, Roden RC, Bergmeier W.

Blood. 2009 Sep 17;114(12):2506-14. doi: 10.1182/blood-2009-04-218768. Epub 2009 Jul 23.

8.

The small GTPase Rap1 is activated by turbulence and is involved in integrin [alpha]IIb[beta]3-mediated cell adhesion in human megakaryocytes.

de Bruyn KM, Zwartkruis FJ, de Rooij J, Akkerman JW, Bos JL.

J Biol Chem. 2003 Jun 20;278(25):22412-7. Epub 2003 Apr 10.

9.

Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding.

Canault M, Ghalloussi D, Grosdidier C, Guinier M, Perret C, Chelghoum N, Germain M, Raslova H, Peiretti F, Morange PE, Saut N, Pillois X, Nurden AT, Cambien F, Pierres A, van den Berg TK, Kuijpers TW, Alessi MC, Tregouet DA.

J Exp Med. 2014 Jun 30;211(7):1349-62. doi: 10.1084/jem.20130477. Epub 2014 Jun 23.

10.

All in the family: primary megakaryocytes for studies of platelet alphaIIbbeta3 signaling.

Shattil SJ, Leavitt AD.

Thromb Haemost. 2001 Jul;86(1):259-65. Review.

PMID:
11487014
11.

Production of functional platelets by differentiated embryonic stem (ES) cells in vitro.

Fujimoto TT, Kohata S, Suzuki H, Miyazaki H, Fujimura K.

Blood. 2003 Dec 1;102(12):4044-51. Epub 2003 Aug 14.

12.

Genetic manipulation of megakaryocytes to study platelet function.

Liu J, DeNofrio J, Yuan W, Wang Z, McFadden AW, Parise LV.

Curr Top Dev Biol. 2008;80:311-35. Review.

PMID:
17950378
13.

Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction.

Lozano ML, Cook A, Bastida JM, Paul DS, Iruin G, Cid AR, Adan-Pedroso R, Ramón González-Porras J, Hernández-Rivas JM, Fletcher SJ, Johnson B, Morgan N, Ferrer-Marin F, Vicente V, Sondek J, Watson SP, Bergmeier W, Rivera J.

Blood. 2016 Sep 1;128(9):1282-9. doi: 10.1182/blood-2015-11-683102. Epub 2016 May 27.

14.

Calcium-diacylglycerol guanine nucleotide exchange factor I gene mutations associated with loss of function in canine platelets.

Boudreaux MK, Catalfamo JL, Klok M.

Transl Res. 2007 Aug;150(2):81-92. Epub 2007 May 25.

PMID:
17656327
15.

Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation.

Subramanian H, Zahedi RP, Sickmann A, Walter U, Gambaryan S.

J Thromb Haemost. 2013 Aug;11(8):1574-82. doi: 10.1111/jth.12271.

16.

A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2.

Guo FF, Kumahara E, Saffen D.

J Biol Chem. 2001 Jul 6;276(27):25568-81. Epub 2001 Apr 5.

17.

Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis.

Rivière C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, Vainchenker W, Louache F.

Blood. 1999 Mar 1;93(5):1511-23.

18.

A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia.

Ghevaert C, Salsmann A, Watkins NA, Schaffner-Reckinger E, Rankin A, Garner SF, Stephens J, Smith GA, Debili N, Vainchenker W, de Groot PG, Huntington JA, Laffan M, Kieffer N, Ouwehand WH.

Blood. 2008 Apr 1;111(7):3407-14. Epub 2007 Dec 7.

19.

The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy.

Stolla M, Stefanini L, Roden RC, Chavez M, Hirsch J, Greene T, Ouellette TD, Maloney SF, Diamond SL, Poncz M, Woulfe DS, Bergmeier W.

Blood. 2011 Jan 20;117(3):1005-13. doi: 10.1182/blood-2010-07-297713. Epub 2010 Oct 22.

20.

RhoA and the function of platelet integrin alphaIIbbeta3.

Leng L, Kashiwagi H, Ren XD, Shattil SJ.

Blood. 1998 Jun 1;91(11):4206-15.

Supplemental Content

Support Center