Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Surface chemistry of silicon nanoclusters.

Puzder A, Williamson AJ, Grossman JC, Galli G.

Phys Rev Lett. 2002 Mar 4;88(9):097401.

PMID:
11864049
2.
3.

Computational studies of the optical emission of silicon nanocrystals.

Puzder A, Williamson AJ, Grossman JC, Galli G.

J Am Chem Soc. 2003 Mar 5;125(9):2786-91.

PMID:
12603167
4.

Structural and optical properties of passivated silicon nanoclusters with different shapes: a theoretical investigation.

Wang BC, Chou YM, Deng JP, Dung YT.

J Phys Chem A. 2008 Jul 17;112(28):6351-7. doi: 10.1021/jp8006975.

PMID:
18570356
5.

Quantum sized gold nanoclusters with atomic precision.

Qian H, Zhu M, Wu Z, Jin R.

Acc Chem Res. 2012 Sep 18;45(9):1470-9. doi: 10.1021/ar200331z.

PMID:
22720781
6.

Optical properties of passivated silicon nanoclusters: the role of synthesis.

Draeger EW, Grossman JC, Williamson AJ, Galli G.

J Chem Phys. 2004 Jun 8;120(22):10807-14.

PMID:
15268108
7.

Computational studies of semiconductor quantum dots.

Lehtonen O, Sundholm D, Vänskä T.

Phys Chem Chem Phys. 2008 Aug 21;10(31):4535-50. doi: 10.1039/b804212h.

PMID:
18665302
8.

Growth of silicon nanoclusters on different substrates by plasma enhanced chemical vapor deposition.

Monroy BM, Santana G, Fandiõ J, Ortiz A, Alonso JC.

J Nanosci Nanotechnol. 2006 Dec;6(12):3752-5.

PMID:
17256325
9.

First-principles investigation of strain effects on the energy gaps in silicon nanoclusters.

Peng XH, Alizadeh A, Bhate N, Varanasi KK, Kumar SK, Nayak SK.

J Phys Condens Matter. 2007 Jul 4;19(26):266212. doi: 10.1088/0953-8984/19/26/266212.

PMID:
21694089
10.

Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots.

Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G.

Phys Rev Lett. 2002 Nov 4;89(19):196803.

PMID:
12443140
11.

Stability of singly hydrated silanone on silicon quantum dot surfaces: density functional simulations.

Eyre RJ, Goss JP, MacLeod RM, Briddon PR.

Phys Chem Chem Phys. 2008 Aug 14;10(30):4495-502. doi: 10.1039/b719684a.

PMID:
18654691
12.

First-principles study of silicon nanocrystals: structural and electronic properties, absorption, emission, and doping.

Ossicini S, Bisi O, Degoli E, Marri I, Iori F, Luppi E, Magri R, Poli R, Cantele G, Ninno D, Trani F, Marsili M, Pulci O, Olevano V, Gatti M, Gaal-Nagy K, Incze A, Onida G.

J Nanosci Nanotechnol. 2008 Feb;8(2):479-92.

PMID:
18464361
14.

High accuracy calculations of the optical gap and absorption spectrum of oxygen contaminated Si nanocrystals.

Garoufalis CS, Zdetsis AD.

Phys Chem Chem Phys. 2006 Feb 21;8(7):808-13.

PMID:
16482321
15.

Optimal surface functionalization of silicon quantum dots.

Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T.

J Chem Phys. 2008 Jun 28;128(24):244714. doi: 10.1063/1.2940735.

PMID:
18601372
16.

Dielectric response of periodic systems from quantum Monte Carlo calculations.

Umari P, Willamson AJ, Galli G, Marzari N.

Phys Rev Lett. 2005 Nov 11;95(20):207602.

PMID:
16384099
17.

What silicon nanocluster is most likely formed in etching experiments? Theoretical DFT study.

Zhanpeisov NU, Fukumura H.

J Nanosci Nanotechnol. 2008 Jul;8(7):3478-82.

PMID:
19051898
18.

Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility.

Cho WJ, Kim Y, Kim JK.

ACS Nano. 2012 Jan 24;6(1):249-55. doi: 10.1021/nn2035236.

PMID:
22117916
19.

Structural stability and optical properties of nanomaterials with reconstructed surfaces.

Puzder A, Williamson AJ, Reboredo FA, Galli G.

Phys Rev Lett. 2003 Oct 10;91(15):157405.

PMID:
14611496
20.

Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.

Pandey SC, Singh T, Maroudas D.

J Chem Phys. 2009 Jul 21;131(3):034503. doi: 10.1063/1.3152846.

PMID:
19624205

Supplemental Content

Support Center