Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 143

1.

Enzyme dynamics during catalysis.

Eisenmesser EZ, Bosco DA, Akke M, Kern D.

Science. 2002 Feb 22;295(5559):1520-3.

2.

Intrinsic dynamics of an enzyme underlies catalysis.

Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D.

Nature. 2005 Nov 3;438(7064):117-21.

PMID:
16267559
3.
4.
5.

Enzyme dynamics during catalysis measured by NMR spectroscopy.

Kern D, Eisenmesser EZ, Wolf-Watz M.

Methods Enzymol. 2005;394:507-24.

PMID:
15808235
6.

Characterization of enzyme motions by solution NMR relaxation dispersion.

Loria JP, Berlow RB, Watt ED.

Acc Chem Res. 2008 Feb;41(2):214-21. doi: 10.1021/ar700132n. Epub 2008 Feb 19. Review.

PMID:
18281945
7.

Dissecting the microscopic steps of the cyclophilin A enzymatic cycle on the biological HIV-1 capsid substrate by NMR.

Bosco DA, Eisenmesser EZ, Clarkson MW, Wolf-Watz M, Labeikovsky W, Millet O, Kern D.

J Mol Biol. 2010 Nov 12;403(5):723-38. doi: 10.1016/j.jmb.2010.08.001. Epub 2010 Aug 12.

PMID:
20708627
8.

Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states.

Jensen KS, Winther JR, Teilum K.

J Am Chem Soc. 2011 Mar 9;133(9):3034-42. doi: 10.1021/ja1096539. Epub 2011 Feb 16.

PMID:
21323311
9.

Role of protein dynamics in reaction rate enhancement by enzymes.

Agarwal PK.

J Am Chem Soc. 2005 Nov 2;127(43):15248-56.

PMID:
16248667
10.

Structural insights into the catalytic mechanism of cyclophilin A.

Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP.

Nat Struct Biol. 2003 Jun;10(6):475-81.

PMID:
12730686
11.

Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.

McGowan LC, Hamelberg D.

Biophys J. 2013 Jan 8;104(1):216-26. doi: 10.1016/j.bpj.2012.11.3815. Epub 2013 Jan 8.

12.

Enzymology. A moving story.

Falke JJ.

Science. 2002 Feb 22;295(5559):1480-1. No abstract available.

13.

Structure and dynamics of a molten globular enzyme.

Pervushin K, Vamvaca K, Vögeli B, Hilvert D.

Nat Struct Mol Biol. 2007 Dec;14(12):1202-6. Epub 2007 Nov 11.

PMID:
17994104
14.

Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.

Piana S, Carloni P, Parrinello M.

J Mol Biol. 2002 May 31;319(2):567-83.

PMID:
12051929
15.

Characterizing and controlling the inherent dynamics of cyclophilin-A.

Schlegel J, Armstrong GS, Redzic JS, Zhang F, Eisenmesser EZ.

Protein Sci. 2009 Apr;18(4):811-24. doi: 10.1002/pro.89.

16.

Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase.

Entsch B, Cole LJ, Ballou DP.

Arch Biochem Biophys. 2005 Jan 1;433(1):297-311. Review.

PMID:
15581585
17.

Resolving the complex role of enzyme conformational dynamics in catalytic function.

Doshi U, McGowan LC, Ladani ST, Hamelberg D.

Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5699-704. doi: 10.1073/pnas.1117060109. Epub 2012 Mar 26.

18.

Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited.

Prompers JJ, Groenewegen A, Hilbers CW, Pepermans HA.

Biochemistry. 1999 Apr 27;38(17):5315-27.

PMID:
10220318
19.

Conformational Sub-states and Populations in Enzyme Catalysis.

Agarwal PK, Doucet N, Chennubhotla C, Ramanathan A, Narayanan C.

Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9. Review.

20.

Efficient coupling of catalysis and dynamics in the E1 component of Escherichia coli pyruvate dehydrogenase multienzyme complex.

Kale S, Ulas G, Song J, Brudvig GW, Furey W, Jordan F.

Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1158-63. doi: 10.1073/pnas.0709328105. Epub 2008 Jan 23.

Supplemental Content

Support Center