Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

SPOUT: a class of methyltransferases that includes spoU and trmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases.

Anantharaman V, Koonin EV, Aravind L.

J Mol Microbiol Biotechnol. 2002 Jan;4(1):71-5. No abstract available.

PMID:
11763972
2.

SpoU protein of Escherichia coli belongs to a new family of putative rRNA methylases.

Koonin EV, Rudd KE.

Nucleic Acids Res. 1993 Nov 25;21(23):5519. No abstract available.

3.

The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.

Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A.

RNA. 2005 Jul;11(7):1051-63.

4.

The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus.

Takeda H, Toyooka T, Ikeuchi Y, Yokobori S, Okadome K, Takano F, Oshima T, Suzuki T, Endo Y, Hori H.

Genes Cells. 2006 Dec;11(12):1353-65.

5.

Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.

Krishnamohan A, Jackman JE.

Nucleic Acids Res. 2017 Sep 6;45(15):9019-9029. doi: 10.1093/nar/gkx620.

6.
8.
9.

Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer.

Urbonavicius J, Auxilien S, Walbott H, Trachana K, Golinelli-Pimpaneau B, Brochier-Armanet C, Grosjean H.

Mol Microbiol. 2008 Jan;67(2):323-35. Epub 2007 Dec 7.

10.

Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.

Kuratani M, Bessho Y, Nishimoto M, Grosjean H, Yokoyama S.

J Mol Biol. 2008 Jan 25;375(4):1064-75. Epub 2007 Nov 17.

PMID:
18068186
11.

Differences in substrate selectivities of the SPOUT superfamily of methyltransferases.

Toyooka T, Hori H.

Nucleic Acids Symp Ser (Oxf). 2007;(51):445-6.

PMID:
18029778
12.

Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications.

Urbonavicius J, Skouloubris S, Myllykallio H, Grosjean H.

Nucleic Acids Res. 2005 Jul 18;33(13):3955-64. Print 2005.

13.

Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family.

Basturea GN, Rudd KE, Deutscher MP.

RNA. 2006 Mar;12(3):426-34. Epub 2006 Jan 23.

14.

Bioinformatic analyses of the tRNA: (guanine 26, N2,N2)-dimethyltransferase (Trm1) family.

Bujnicki JM, Leach RA, Debski J, Rychlewski L.

J Mol Microbiol Biotechnol. 2002 Jul;4(4):405-15.

PMID:
12125821
15.

Glycogen synthase: towards a minimum catalytic unit?

Cid E, Geremia RA, Guinovart JJ, Ferrer JC.

FEBS Lett. 2002 Sep 25;528(1-3):5-11. Review.

16.

Distinct origins of tRNA(m1G37) methyltransferase.

Christian T, Evilia C, Williams S, Hou YM.

J Mol Biol. 2004 Jun 11;339(4):707-19.

PMID:
15165845
17.

Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family.

Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H.

J Biol Chem. 2005 Mar 18;280(11):10368-77. Epub 2005 Jan 6.

18.

Stereochemical mechanisms of tRNA methyltransferases.

Hou YM, Perona JJ.

FEBS Lett. 2010 Jan 21;584(2):278-86. doi: 10.1016/j.febslet.2009.11.075. Review.

19.

A primordial tRNA modification required for the evolution of life?

Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Byström AS, Persson OP.

EMBO J. 2001 Jan 15;20(1-2):231-9.

20.

Sequence-structure-function relationships of a tRNA (m7G46) methyltransferase studied by homology modeling and site-directed mutagenesis.

Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM.

Proteins. 2005 May 15;59(3):482-8.

PMID:
15789416

Supplemental Content

Support Center