Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Interferon-beta induction by Chlamydia pneumoniae in human smooth muscle cells.

Rödel J, Assefa S, Prochnau D, Woytas M, Hartmann M, Groh A, Straube E.

FEMS Immunol Med Microbiol. 2001 Dec;32(1):9-15.

2.

Production of basic fibroblast growth factor and interleukin 6 by human smooth muscle cells following infection with Chlamydia pneumoniae.

Rödel J, Woytas M, Groh A, Schmidt KH, Hartmann M, Lehmann M, Straube E.

Infect Immun. 2000 Jun;68(6):3635-41.

3.
4.

Expression of interferon regulatory factors and indoleamine 2,3-dioxygenase in Chlamydia trachomatis-infected synovial fibroblasts.

Rödel J, Groh A, Hartmann M, Schmidt KH, Lehmann M, Lungershausen W, Straube E.

Med Microbiol Immunol. 1999 May;187(4):205-12.

PMID:
10363677
5.

Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells.

Buss C, Opitz B, Hocke AC, Lippmann J, van Laak V, Hippenstiel S, Krüll M, Suttorp N, Eitel J.

J Immunol. 2010 Mar 15;184(6):3072-8. doi: 10.4049/jimmunol.0902947. Epub 2010 Feb 12.

6.

STAT1 regulates IFN-alpha beta- and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells.

Rothfuchs AG, Trumstedt C, Mattei F, Schiavoni G, Hidmark A, Wigzell H, Rottenberg ME.

J Immunol. 2006 Jun 1;176(11):6982-90.

7.

In vitro infection of smooth muscle cells by Chlamydia pneumoniae.

Knoebel E, Vijayagopal P, Figueroa JE 2nd, Martin DH.

Infect Immun. 1997 Feb;65(2):503-6.

8.
9.

Role of IRAK4 and IRF3 in the control of intracellular infection with Chlamydia pneumoniae.

Trumstedt C, Eriksson E, Lundberg AM, Yang TB, Yan ZQ, Wigzell H, Rottenberg ME.

J Leukoc Biol. 2007 Jun;81(6):1591-8. Epub 2007 Mar 14.

PMID:
17360955
10.

Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo.

Rupp J, Hellwig-Burgel T, Wobbe V, Seitzer U, Brandt E, Maass M.

Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3447-52. Epub 2005 Feb 18.

11.

Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells.

Hosey KL, Hu S, Derbigny WA.

J Interferon Cytokine Res. 2015 Nov;35(11):901-16. doi: 10.1089/jir.2015.0013. Epub 2015 Aug 11.

12.

Divergent modulation of Chlamydia pneumoniae infection cycle in human monocytic and endothelial cells by iron, tryptophan availability and interferon gamma.

Bellmann-Weiler R, Martinz V, Kurz K, Engl S, Feistritzer C, Fuchs D, Rupp J, Paldanius M, Weiss G.

Immunobiology. 2010 Sep-Oct;215(9-10):842-8. doi: 10.1016/j.imbio.2010.05.021. Epub 2010 Jun 4.

PMID:
20646782
13.
15.
16.

Roles of interleukin-12 and gamma interferon in murine Chlamydia pneumoniae infection.

Geng Y, Berencsi K, Gyulai Z, Valyi-Nagy T, Gonczol E, Trinchieri G.

Infect Immun. 2000 Apr;68(4):2245-53.

17.

Increased production of matrix metalloproteinases 1 and 3 by smooth muscle cells upon infection with Chlamydia pneumoniae.

Rödel J, Prochnau D, Prager K, Pentcheva E, Hartmann M, Straube E.

FEMS Immunol Med Microbiol. 2003 Sep 22;38(2):159-64.

18.
20.

Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-alpha.

Li X, Leung S, Qureshi S, Darnell JE Jr, Stark GR.

J Biol Chem. 1996 Mar 8;271(10):5790-4.

Supplemental Content

Support Center