Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

The complete pathway for catalytic activation of the mitogen-activated protein kinase, ERK2.

Prowse CN, Deal MS, Lew J.

J Biol Chem. 2001 Nov 2;276(44):40817-23. Epub 2001 Aug 27.

2.

Mechanism of activation of ERK2 by dual phosphorylation.

Prowse CN, Lew J.

J Biol Chem. 2001 Jan 5;276(1):99-103.

3.

A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.

Zhang J, Zhou B, Zheng CF, Zhang ZY.

J Biol Chem. 2003 Aug 8;278(32):29901-12. Epub 2003 May 16.

4.

Kinetic basis for activation of CDK2/cyclin A by phosphorylation.

Hagopian JC, Kirtley MP, Stevenson LM, Gergis RM, Russo AA, Pavletich NP, Parsons SM, Lew J.

J Biol Chem. 2001 Jan 5;276(1):275-80.

5.
6.

Activation mechanism of CDK2: role of cyclin binding versus phosphorylation.

Stevenson LM, Deal MS, Hagopian JC, Lew J.

Biochemistry. 2002 Jul 2;41(26):8528-34.

PMID:
12081504
7.

The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation.

Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD.

Structure. 2001 Dec;9(12):1143-52.

8.

Structural basis of cyclin-dependent kinase activation by phosphorylation.

Russo AA, Jeffrey PD, Pavletich NP.

Nat Struct Biol. 1996 Aug;3(8):696-700.

PMID:
8756328
9.

Catalytic reaction pathway for the mitogen-activated protein kinase ERK2.

Prowse CN, Hagopian JC, Cobb MH, Ahn NG, Lew J.

Biochemistry. 2000 May 23;39(20):6258-66. Erratum in: Biochemistry 2000 Nov 14;39(45):14002.

PMID:
10821702
11.

Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase.

Huang Z, Zhou B, Zhang ZY.

J Biol Chem. 2004 Dec 10;279(50):52150-9. Epub 2004 Oct 4.

12.

Activation mechanism of the MAP kinase ERK2 by dual phosphorylation.

Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ.

Cell. 1997 Sep 5;90(5):859-69.

13.

Structure of GSK3beta reveals a primed phosphorylation mechanism.

ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J.

Nat Struct Biol. 2001 Jul;8(7):593-6.

PMID:
11427888
14.

New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding.

Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM.

J Mol Biol. 2005 Dec 9;354(4):777-88. Epub 2005 Oct 21.

PMID:
16288922
15.

A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity.

Wang ZX, Zhou B, Wang QM, Zhang ZY.

Biochemistry. 2002 Jun 18;41(24):7849-57.

PMID:
12056917
16.

Analysis of beta3-endonexin mutants for their ability to interact with cyclin A.

Ohtoshi A, Otoshi H.

Mol Genet Genomics. 2001 Dec;266(4):664-71. Epub 2001 Oct 11.

PMID:
11810239
17.

Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism.

Cook A, Lowe ED, Chrysina ED, Skamnaki VT, Oikonomakos NG, Johnson LN.

Biochemistry. 2002 Jun 11;41(23):7301-11.

PMID:
12044161
18.

The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation.

Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP.

Structure. 1999 Sep 15;7(9):1057-65.

PMID:
10508788
19.

Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis.

Madec E, Stensballe A, Kjellström S, Cladière L, Obuchowski M, Jensen ON, Séror SJ.

J Mol Biol. 2003 Jul 11;330(3):459-72.

PMID:
12842463
20.

Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5'-triphosphate.

Robinson MJ, Harkins PC, Zhang J, Baer R, Haycock JW, Cobb MH, Goldsmith EJ.

Biochemistry. 1996 May 7;35(18):5641-6.

PMID:
8639522

Supplemental Content

Support Center