Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea.

Kashefi K, Tor JM, Nevin KP, Lovley DR.

Appl Environ Microbiol. 2001 Jul;67(7):3275-9.

2.

Dissimilatory Fe(III) and Mn(IV) reduction.

Lovley DR, Holmes DE, Nevin KP.

Adv Microb Physiol. 2004;49:219-86. Review.

PMID:
15518832
3.

Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.

Kashefi K, Shelobolina ES, Elliott WC, Lovley DR.

Appl Environ Microbiol. 2008 Jan;74(1):251-8.

4.

The geomicrobiology of gold.

Reith F, Lengke MF, Falconer D, Craw D, Southam G.

ISME J. 2007 Nov;1(7):567-84. Review.

PMID:
18043665
5.

[Thermophilic microbial metal reduction].

Slobodkin AI.

Mikrobiologiia. 2005 Sep-Oct;74(5):581-95. Review. Russian.

PMID:
16315976
6.

Acetate oxidation coupled to Fe(iii) reduction in hyperthermophilic microorganisms.

Tor JM, Kashefi K, Lovley DR.

Appl Environ Microbiol. 2001 Mar;67(3):1363-5.

7.

[Phylogenetic diversity of dissimilatory Fe(III)-reducing bacteria in paddy soil].

Li HJ, Peng JJ.

Ying Yong Sheng Tai Xue Bao. 2011 Oct;22(10):2705-10. Chinese.

PMID:
22263478
9.
10.

Dissimilatory Fe(III) and Mn(IV) reduction.

Lovley DR.

Microbiol Rev. 1991 Jun;55(2):259-87. Review.

11.

Microbe-metal interactions in marine hydrothermal environments.

Holden JF, Adams MW.

Curr Opin Chem Biol. 2003 Apr;7(2):160-5. Review.

PMID:
12714047
12.
13.

Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum.

Kashefi K, Lovley DR.

Appl Environ Microbiol. 2000 Mar;66(3):1050-6.

14.

Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe.

Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Röling WF.

Environ Microbiol. 2007 Aug;9(8):1956-68.

PMID:
17635542
15.

The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.

Drewniak L, Maryan N, Lewandowski W, Kaczanowski S, Sklodowska A.

Environ Pollut. 2012 Mar;162:190-201. doi: 10.1016/j.envpol.2011.11.023.

PMID:
22243864
16.

Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.

Akerman NH, Price RE, Pichler T, Amend JP.

Geobiology. 2011 Sep;9(5):436-45. doi: 10.1111/j.1472-4669.2011.00291.x.

PMID:
21884364
17.

Selection of bacteria capable of dissimilatory reduction of Fe(III) from a long-term continuous culture on molasses and their use in a microbial fuel cell.

Sikora A, Wójtowicz-Sieńko J, Piela P, Zielenkiewicz U, Tomczyk-Zak K, Chojnacka A, Sikora R, Kowalczyk P, Grzesiuk E, Błaszczyk M.

J Microbiol Biotechnol. 2011 Mar;21(3):305-16.

18.

Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.

Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR.

J Bacteriol. 1996 Apr;178(8):2402-8.

19.

Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria.

Amend JP, Shock EL.

FEMS Microbiol Rev. 2001 Apr;25(2):175-243. Review.

Items per page

Supplemental Content

Support Center