Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Longitudinal field modes probed by single molecules.

Novotny L, Beversluis MR, Youngworth KS, Brown TG.

Phys Rev Lett. 2001 Jun 4;86(23):5251-4.

PMID:
11384470
2.

Investigation of electric field enhancement between metal blocks at the focused field generated by a radially polarized beam.

Kitamura K, Xu TT, Noda S.

Opt Express. 2013 Dec 30;21(26):32217-24. doi: 10.1364/OE.21.032217.

PMID:
24514816
3.

Interaction of radially polarized focused light with a prolate spheroidal nanoparticle.

Sendur K, Sahinöz A.

Opt Express. 2009 Jun 22;17(13):10910-25.

PMID:
19550491
4.

Generation of optical vector beams using a two-mode fiber.

Viswanathan NK, Inavalli VV.

Opt Lett. 2009 Apr 15;34(8):1189-91.

PMID:
19370113
5.
6.
7.

Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

Kitamura K, Sakai K, Noda S.

Opt Express. 2011 Jul 18;19(15):13750-6. doi: 10.1364/OE.19.013750.

PMID:
21934735
8.
9.

The dark side of plasmonics.

Gómez DE, Teo ZQ, Altissimo M, Davis TJ, Earl S, Roberts A.

Nano Lett. 2013 Aug 14;13(8):3722-8. doi: 10.1021/nl401656e. Epub 2013 Jul 8.

PMID:
23802620
10.

Sharper focus for a radially polarized light beam.

Dorn R, Quabis S, Leuchs G.

Phys Rev Lett. 2003 Dec 5;91(23):233901. Epub 2003 Dec 2.

PMID:
14683185
11.

Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams.

Dedecker P, Muls B, Hofkens J, Enderlein J, Hotta J.

Opt Express. 2007 Mar 19;15(6):3372-83.

PMID:
19532578
12.

Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes.

Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N.

Appl Opt. 2007 Jun 1;46(16):3304-10.

PMID:
17514287
13.

Sharper focal spot formed by higher-order radially polarized laser beams.

Kozawa Y, Sato S.

J Opt Soc Am A Opt Image Sci Vis. 2007 Jun;24(6):1793-8.

PMID:
17491650
14.

Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam.

Kitamura K, Sakai K, Noda S.

Opt Express. 2010 Mar 1;18(5):4518-25. doi: 10.1364/OE.18.004518.

PMID:
20389464
15.

Focusing property of a double-ring-shaped radially polarized beam.

Kozawa Y, Sato S.

Opt Lett. 2006 Mar 15;31(6):820-2.

PMID:
16544635
16.

Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.

Fu M, Qian L, Long H, Wang K, Lu P, Rakovich YP, Hetsch F, Susha AS, Rogach AL.

Nanoscale. 2014 Aug 7;6(15):9192-7. doi: 10.1039/c4nr01497a.

PMID:
24981883
17.

Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams.

Nie Z, Ding W, Li D, Zhang X, Wang Y, Song Y.

Opt Express. 2015 Jan 26;23(2):690-701. doi: 10.1364/OE.23.000690.

PMID:
25835829
18.

Polarization-dependent SERS at differently oriented single gold nanorods.

Jiao J, Wang X, Wackenhut F, Horneber A, Chen L, Failla AV, Meixner AJ, Zhang D.

Chemphyschem. 2012 Mar;13(4):952-8. doi: 10.1002/cphc.201100718. Epub 2012 Feb 29.

PMID:
22378600
19.

Analytical vectorial structure of radially polarized light beams.

Deng D, Guo Q.

Opt Lett. 2007 Sep 15;32(18):2711-3.

PMID:
17873944
20.

Beam width of highly-focused radially-polarized fields.

Martínez-Herrero R, Mejías PM, Manjavacas A.

Opt Express. 2010 Sep 27;18(20):20817-26. doi: 10.1364/OE.18.020817.

PMID:
20940976

Supplemental Content

Support Center