Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 186

1.

Routes for fructose utilization by Escherichia coli.

Kornberg HL.

J Mol Microbiol Biotechnol. 2001 Jul;3(3):355-9. Review.

PMID:
11361065
2.

Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.

Kornberg HL, Lambourne LT, Sproul AA.

Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1808-12.

PMID:
10677538
3.

Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon.

Gaurivaud P, Laigret F, Garnier M, Bove JM.

Gene. 2000 Jul 11;252(1-2):61-9.

PMID:
10903438
4.
5.

Function of the duplicated IIB domain and oligomeric structure of the fructose permease of Escherichia coli.

Charbit A, Reizer J, Saier MH Jr.

J Biol Chem. 1996 Apr 26;271(17):9997-10003.

PMID:
8626640
6.

Fructose transport by Escherichia coli.

Kornberg HL.

Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):505-13. Review.

PMID:
1970653
7.

Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes.

de Crécy-Lagard V, Bouvet OM, Lejeune P, Danchin A.

J Biol Chem. 1991 Sep 25;266(27):18154-61.

PMID:
1655739
9.

The complete phosphotransferase system in Escherichia coli.

Tchieu JH, Norris V, Edwards JS, Saier MH Jr.

J Mol Microbiol Biotechnol. 2001 Jul;3(3):329-46. Review.

PMID:
11361063
10.

Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli.

Geerse RH, Ruig CR, Schuitema AR, Postma PW.

Mol Gen Genet. 1986 Jun;203(3):435-44.

PMID:
3528748
11.

[Isolation and properties of mutants devoid of pseudo-HPr activity of the fructose transfer system in Escherichia coli K12].

Sergeev KV, Umiarov AM, Dobrynina OIu, Bol'shakova TN, Gershanovich VN.

Genetika. 1997 Mar;33(3):321-7. Russian.

PMID:
9244762
12.

[The multifunctional fructose-specific component of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K12--fruA gene product].

Dobrynina OIu, Erlagaeva RS, Umiarov AM, Bol'shakova TN.

Mol Gen Mikrobiol Virusol. 2001;(4):18-22. Russian.

PMID:
11816114
13.

Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation.

Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N.

J Bacteriol. 2003 Nov;185(21):6241-54.

PMID:
14563858
14.

A route for fructose utilization by Escherichia coli involving the fucose regulon.

Kornberg H, Lourenco C.

Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19496-9. Epub 2006 Dec 11.

PMID:
17159144
15.

A novel mutation FruS, altering synthesis of components of the phosphoenolpyruvate: fructose phosphotransferase system in Escherichia coli K12.

Bolshakova TN, Molchanova ML, Erlagaeva RS, Grigorenko YA, Gershanovitch VN.

Mol Gen Genet. 1992 Apr;232(3):394-8.

PMID:
1534139
16.
18.

Genetic control of manno(fructo)kinase activity in Escherichia coli.

Sproul AA, Lambourne LT, Jean-Jacques D J, Kornberg HL.

Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15257-9. Epub 2001 Dec 11.

PMID:
11742072
19.

Corynebacterium diphtheriae: a PTS view to the genome.

Parche S, Thomae AW, Schlicht M, Titgemeyer F.

J Mol Microbiol Biotechnol. 2001 Jul;3(3):415-22. Review.

PMID:
11361072
20.

The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system.

Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A.

J Bacteriol. 2004 Jul;186(14):4543-55.

PMID:
15231787

Supplemental Content

Support Center