Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation.

Braunstein GM, Roman RM, Clancy JP, Kudlow BA, Taylor AL, Shylonsky VG, Jovov B, Peter K, Jilling T, Ismailov II, Benos DJ, Schwiebert LM, Fitz JG, Schwiebert EM.

J Biol Chem. 2001 Mar 2;276(9):6621-30. Epub 2000 Nov 10.

2.

Purinergic signaling underlies CFTR control of human airway epithelial cell volume.

Braunstein GM, Zsembery A, Tucker TA, Schwiebert EM.

J Cyst Fibros. 2004 Jun;3(2):99-117.

3.

Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive cl(-) channels.

Hazama A, Shimizu T, Ando-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, Okada Y.

J Gen Physiol. 1999 Oct;114(4):525-33.

6.

The cystic fibrosis transmembrane conductance regulator and ATP.

Devidas S, Guggino WB.

Curr Opin Cell Biol. 1997 Aug;9(4):547-52. Review.

PMID:
9261051
7.

Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl- conductances in murine C127 cells.

Hazama A, Fan HT, Abdullaev I, Maeno E, Tanaka S, Ando-Akatsuka Y, Okada Y.

J Physiol. 2000 Feb 15;523 Pt 1:1-11.

8.
9.

CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP.

Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB.

Cell. 1995 Jun 30;81(7):1063-73.

10.

CFTR-like chloride channels in non-ciliated bronchiolar epithelial (Clara) cells.

Chinet TC, Gabriel SE, Penland CM, Sato M, Stutts MJ, Boucher RC, Van Scott MR.

Biochem Biophys Res Commun. 1997 Jan 13;230(2):470-5.

PMID:
9016805
11.
12.

Evidence for Gd(3+) inhibition of membrane ATP permeability and purinergic signaling.

Roman RM, Feranchak AP, Davison AK, Schwiebert EM, Fitz JG.

Am J Physiol. 1999 Dec;277(6 Pt 1):G1222-30.

PMID:
10600820
13.

[The mechanism of ATP release as an autocrine/paracrine molecule].

Katsuragi T, Migita K.

Nihon Yakurigaku Zasshi. 2004 Jun;123(6):382-8. Review. Japanese.

PMID:
15170077
14.
15.

External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism.

Cantiello HF, Prat AG, Reisin IL, Ercole LB, Abraham EH, Amara JF, Gregory RJ, Ausiello DA.

J Biol Chem. 1994 Apr 15;269(15):11224-32.

16.

ENaC- and CFTR-dependent ion and fluid transport in human middle ear epithelial cells.

Choi JY, Son EJ, Kim JL, Lee JH, Park HY, Kim SH, Song MH, Yoon JH.

Hear Res. 2006 Jan;211(1-2):26-32. Epub 2005 Oct 12.

PMID:
16226002
17.

Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.

Bompadre SG, Li M, Hwang TC.

J Biol Chem. 2008 Feb 29;283(9):5364-9. doi: 10.1074/jbc.M709417200. Epub 2007 Dec 30.

18.

Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.

Hughes LK, Ju M, Sheppard DN.

Mol Membr Biol. 2008 Sep;25(6-7):528-38. doi: 10.1080/09687680802487967.

PMID:
18989824
19.

Deformation-induced ATP release from red blood cells requires CFTR activity.

Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ.

Am J Physiol. 1998 Nov;275(5 Pt 2):H1726-32.

PMID:
9815080
20.

Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain.

Ando-Akatsuka Y, Abdullaev IF, Lee EL, Okada Y, Sabirov RZ.

Pflugers Arch. 2002 Nov;445(2):177-86. Epub 2002 Sep 7.

PMID:
12457238

Supplemental Content

Support Center