Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 264

1.
2.

Stimulation of the weak ATPase activity of human hsp90 by a client protein.

McLaughlin SH, Smith HW, Jackson SE.

J Mol Biol. 2002 Jan 25;315(4):787-98.

PMID:
11812147
3.

In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.

Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU.

J Cell Biol. 1998 Nov 16;143(4):901-10.

4.

Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system.

Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM.

EMBO J. 2003 Jul 15;22(14):3613-23.

5.

The influence of ATP and p23 on the conformation of hsp90.

Sullivan WP, Owen BA, Toft DO.

J Biol Chem. 2002 Nov 29;277(48):45942-8. Epub 2002 Sep 24.

6.

Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.

Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C.

J Biol Chem. 2004 Dec 10;279(50):51989-98. Epub 2004 Oct 2.

7.
8.

The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.

Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO.

J Biol Chem. 1997 Sep 19;272(38):23843-50.

9.

Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling.

Cox MB, Miller CA 3rd.

Cell Stress Chaperones. 2004 Mar;9(1):4-20.

10.

The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.

McLaughlin SH, Sobott F, Yao ZP, Zhang W, Nielsen PR, Grossmann JG, Laue ED, Robinson CV, Jackson SE.

J Mol Biol. 2006 Feb 24;356(3):746-58. Epub 2005 Dec 15.

PMID:
16403413
11.

Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.

Chadli A, Bouhouche I, Sullivan W, Stensgard B, McMahon N, Catelli MG, Toft DO.

Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12524-9.

12.
13.

Caspase-dependent, geldanamycin-enhanced cleavage of co-chaperone p23 in leukemic apoptosis.

Gausdal G, Gjertsen BT, Fladmark KE, Demol H, Vandekerckhove J, Døskeland SO.

Leukemia. 2004 Dec;18(12):1989-96.

PMID:
15483679
14.

The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.

Richter K, Walter S, Buchner J.

J Mol Biol. 2004 Oct 1;342(5):1403-13.

PMID:
15364569
15.

C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.

Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J.

J Mol Biol. 2000 Nov 3;303(4):583-92.

PMID:
11054293
16.

Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90.

Picard D.

Exp Cell Res. 2006 Jan 15;312(2):198-204. Epub 2005 Nov 11.

PMID:
16289154
17.

A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.

Singh M, Shah V, Tatu U.

J Mol Biol. 2014 Apr 17;426(8):1786-98. doi: 10.1016/j.jmb.2014.01.008. Epub 2014 Jan 29.

PMID:
24486610
19.

Binding of p23 and hsp90 during assembly with the progesterone receptor.

Johnson JL, Toft DO.

Mol Endocrinol. 1995 Jun;9(6):670-8.

PMID:
8592513
20.

An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function.

Weikl T, Abelmann K, Buchner J.

J Mol Biol. 1999 Oct 29;293(3):685-91.

PMID:
10543959

Supplemental Content

Support Center