Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.

Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV.

Science. 1999 Apr 30;284(5415):805-8.

2.

Free copper ions in the cell?

Lippard SJ.

Science. 1999 Apr 30;284(5415):748-9. No abstract available.

PMID:
10336397
3.

Heterodimeric structure of superoxide dismutase in complex with its metallochaperone.

Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC.

Nat Struct Biol. 2001 Sep;8(9):751-5.

PMID:
11524675
4.

Heterodimer formation between superoxide dismutase and its copper chaperone.

Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC.

Biochemistry. 2000 Dec 5;39(48):14720-7.

PMID:
11101286
5.

Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.

Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ, Culotta VC.

J Biol Chem. 2009 Aug 14;284(33):21863-71. doi: 10.1074/jbc.M109.000489.

6.

Copper stabilizes a heterodimer of the yCCS metallochaperone and its target superoxide dismutase.

Torres AS, Petri V, Rae TD, O'Halloran TV.

J Biol Chem. 2001 Oct 19;276(42):38410-6.

7.

The copper chaperone for superoxide dismutase.

Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD.

J Biol Chem. 1997 Sep 19;272(38):23469-72.

8.
9.

Copper delivery by metallochaperone proteins.

Rosenzweig AC.

Acc Chem Res. 2001 Feb;34(2):119-28.

PMID:
11263870
10.

Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.

Pope CR, De Feo CJ, Unger VM.

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20491-6. doi: 10.1073/pnas.1309820110.

11.

Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS.

Rae TD, Torres AS, Pufahl RA, O'Halloran TV.

J Biol Chem. 2001 Feb 16;276(7):5166-76.

12.

Copper chaperones: personal escorts for metal ions.

Field LS, Luk E, Culotta VC.

J Bioenerg Biomembr. 2002 Oct;34(5):373-9. Review.

PMID:
12539964
13.

Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.

Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD.

Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2886-91.

14.

Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone.

Kirby K, Jensen LT, Binnington J, Hilliker AJ, Ulloa J, Culotta VC, Phillips JP.

J Biol Chem. 2008 Dec 19;283(51):35393-401. doi: 10.1074/jbc.M807131200.

15.

Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase.

Brown NM, Torres AS, Doan PE, O'Halloran TV.

Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5518-23.

16.

Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone.

Sea KW, Sheng Y, Lelie HL, Kane Barnese L, Durazo A, Valentine JS, Gralla EB.

J Biol Inorg Chem. 2013 Dec;18(8):985-92. doi: 10.1007/s00775-013-1047-8.

18.

Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

Gleason JE, Li CX, Odeh HM, Culotta VC.

J Biol Inorg Chem. 2014 Jun;19(4-5):595-603. doi: 10.1007/s00775-013-1045-x.

19.

Crystal structure of the copper chaperone for superoxide dismutase.

Lamb AL, Wernimont AK, Pufahl RA, Culotta VC, O'Halloran TV, Rosenzweig AC.

Nat Struct Biol. 1999 Aug;6(8):724-9.

PMID:
10426947
20.

Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase.

Wood LK, Thiele DJ.

J Biol Chem. 2009 Jan 2;284(1):404-13. doi: 10.1074/jbc.M807027200.

Supplemental Content

Support Center