Format
Sort by
Items per page

Send to

Choose Destination

Links from Nucleotide

Items: 1 to 20 of 32

1.

M. tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance.

Sharma D, Lata M, Faheem M, Khan AU, Joshi B, Venkatesan K, Shukla S, Bisht D.

Biochem Biophys Res Commun. 2016 Sep 16;478(2):908-12. doi: 10.1016/j.bbrc.2016.08.049. Epub 2016 Aug 10.

PMID:
27521892
2.

Interaction of Erp Protein of Mycobacterium tuberculosis with Rv2212 Enhances Intracellular Survival of Mycobacterium smegmatis.

Ganaie AA, Trivedi G, Kaur A, Jha SS, Anand S, Rana V, Singh A, Kumar S, Sharma C.

J Bacteriol. 2016 Sep 22;198(20):2841-52. doi: 10.1128/JB.00120-16. Print 2016 Oct 15.

3.

ubiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis.

He L, Wang X, Cui P, Jin J, Chen J, Zhang W, Zhang Y.

Tuberculosis (Edinb). 2015 Mar;95(2):149-54. doi: 10.1016/j.tube.2014.12.002. Epub 2014 Dec 13.

PMID:
25547657
4.

Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins.

Contreras H, Joens MS, McMath LM, Le VP, Tullius MV, Kimmey JM, Bionghi N, Horwitz MA, Fitzpatrick JA, Goulding CW.

J Biol Chem. 2014 Jun 27;289(26):18279-89. doi: 10.1074/jbc.M114.570119. Epub 2014 May 22.

5.

Unique residues at the 3-fold and 4-fold axis of mycobacterial ferritin are involved in oligomer switching.

Khare G, Nangpal P, Tyagi AK.

Biochemistry. 2013 Mar 12;52(10):1694-704. doi: 10.1021/bi301189t. Epub 2013 Feb 27.

PMID:
23409758
6.

Identification of the Mycobacterium tuberculosis protein PE-PGRS62 as a novel effector that functions to block phagosome maturation and inhibit iNOS expression.

Thi EP, Hong CJ, Sanghera G, Reiner NE.

Cell Microbiol. 2013 May;15(5):795-808. doi: 10.1111/cmi.12073. Epub 2012 Dec 19.

PMID:
23167250
7.

Immunogenicity of a fusion protein containing immunodominant epitopes of Ag85C, MPT51, and HspX from Mycobacterium tuberculosis in mice and active TB infection.

de Sousa EM, da Costa AC, Trentini MM, de Araújo Filho JA, Kipnis A, Junqueira-Kipnis AP.

PLoS One. 2012;7(10):e47781. doi: 10.1371/journal.pone.0047781. Epub 2012 Oct 25. Erratum in: PLoS One. 2013;8(9). doi:10.1371/annotation/e4172d52-fc6c-40f1-bc2e-ca3df106d49f.

8.

Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial Arabinogalactan.

Wheatley RW, Zheng RB, Richards MR, Lowary TL, Ng KK.

J Biol Chem. 2012 Aug 10;287(33):28132-43. doi: 10.1074/jbc.M112.347484. Epub 2012 Jun 15.

9.

Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection.

Reddy PV, Puri RV, Khera A, Tyagi AK.

J Bacteriol. 2012 Feb;194(3):567-75. doi: 10.1128/JB.05553-11. Epub 2011 Nov 18.

10.

Crystallization and preliminary X-ray crystallographic analysis of a Mycobacterium tuberculosis ferritin homolog, BfrB.

McMath LM, Habel JE, Sankaran B, Yu M, Hung LW, Goulding CW.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Dec 1;66(Pt 12):1657-61. doi: 10.1107/S1744309110042958. Epub 2010 Nov 26.

11.

TubercuList--10 years after.

Lew JM, Kapopoulou A, Jones LM, Cole ST.

Tuberculosis (Edinb). 2011 Jan;91(1):1-7. doi: 10.1016/j.tube.2010.09.008. Epub 2010 Oct 25.

PMID:
20980199
12.

Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis.

Alderwick LJ, Dover LG, Veerapen N, Gurcha SS, Kremer L, Roper DL, Pathak AK, Reynolds RC, Besra GS.

Protein Expr Purif. 2008 Apr;58(2):332-41. doi: 10.1016/j.pep.2007.11.012. Epub 2007 Dec 8.

PMID:
18248822
14.

PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1.

Kumar P, Schelle MW, Jain M, Lin FL, Petzold CJ, Leavell MD, Leary JA, Cox JS, Bertozzi CR.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11221-6. Epub 2007 Jun 25.

15.

Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis.

Bhatt K, Gurcha SS, Bhatt A, Besra GS, Jacobs WR Jr.

Microbiology. 2007 Feb;153(Pt 2):513-20.

PMID:
17259623
16.

Mycobacterium tuberculosis malate synthase- and MPT51-based serodiagnostic assay as an adjunct to rapid identification of pulmonary tuberculosis.

Achkar JM, Dong Y, Holzman RS, Belisle J, Kourbeti IS, Sherpa T, Condos R, Rom WN, Laal S.

Clin Vaccine Immunol. 2006 Nov;13(11):1291-3.

17.

Expression, purification, and characterization of a galactofuranosyltransferase involved in Mycobacterium tuberculosis arabinogalactan biosynthesis.

Rose NL, Completo GC, Lin SJ, McNeil M, Palcic MM, Lowary TL.

J Am Chem Soc. 2006 May 24;128(20):6721-9.

PMID:
16704275
19.

Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state.

Beis K, Srikannathasan V, Liu H, Fullerton SW, Bamford VA, Sanders DA, Whitfield C, McNeil MR, Naismith JH.

J Mol Biol. 2005 May 13;348(4):971-82.

20.

The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases.

Wilson RA, Maughan WN, Kremer L, Besra GS, Fütterer K.

J Mol Biol. 2004 Jan 9;335(2):519-30.

PMID:
14672660

Supplemental Content

Support Center