Format
Sort by
Items per page

Send to

Choose Destination

Links from Nucleotide

Items: 1 to 20 of 363

1.

DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase.

Graham BW, Tao Y, Dodge KL, Thaxton CT, Olaso D, Young NL, Marshall AG, Trakselis MA.

J Biol Chem. 2016 Jun 10;291(24):12467-80. doi: 10.1074/jbc.M116.719591. Epub 2016 Apr 4.

2.

Single-Molecule Investigation of Response to Oxidative DNA Damage by a Y-Family DNA Polymerase.

Raper AT, Gadkari VV, Maxwell BA, Suo Z.

Biochemistry. 2016 Apr 12;55(14):2187-96. doi: 10.1021/acs.biochem.6b00166. Epub 2016 Mar 30.

3.

The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.

Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R.

Nucleic Acids Res. 2016 Apr 7;44(6):2962-73. doi: 10.1093/nar/gkw062. Epub 2016 Feb 2.

4.

Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M.

J Cell Biochem. 2016 May;117(5):1126-35. doi: 10.1002/jcb.25396. Epub 2015 Oct 18.

PMID:
26477689
5.

Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function.

Liu L, Chen JY, Yang B, Wang FH, Wang YH, Yun CH.

Structure. 2015 Nov 3;23(11):2066-75. doi: 10.1016/j.str.2015.08.015. Epub 2015 Oct 1.

6.

In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus.

Hattori A, Unno H, Goda S, Motoyama K, Yoshimura T, Hemmi H.

J Bacteriol. 2015 Nov;197(21):3463-71. doi: 10.1128/JB.00352-15. Epub 2015 Aug 24.

7.

Binding of the 5'-Triphosphate End of mRNA to the γ-Subunit of Translation Initiation Factor 2 of the Crenarchaeon Sulfolobus solfataricus.

Arkhipova V, Stolboushkina E, Kravchenko O, Kljashtorny V, Gabdulkhakov A, Garber M, Nikonov S, Märtens B, Bläsi U, Nikonov O.

J Mol Biol. 2015 Sep 25;427(19):3086-95. doi: 10.1016/j.jmb.2015.07.020. Epub 2015 Aug 2.

PMID:
26244522
8.

Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.

Bagarolo ML, Porcelli M, Martino E, Feller G, Cacciapuoti G.

Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1458-65. doi: 10.1016/j.bbapap.2015.06.010. Epub 2015 Jun 24.

PMID:
26116147
9.

Complete Genome Sequence of Sulfolobus solfataricus Strain 98/2 and Evolved Derivatives.

McCarthy S, Gradnigo J, Johnson T, Payne S, Lipzen A, Martin J, Schackwitz W, Moriyama E, Blum P.

Genome Announc. 2015 May 28;3(3). pii: e00549-15. doi: 10.1128/genomeA.00549-15.

10.

Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

Jensen KF, Hansen MR, Jensen KS, Christoffersen S, Poulsen JC, Mølgaard A, Kadziola A.

Biochemistry. 2015 Apr 14;54(14):2323-34. doi: 10.1021/bi501334m. Epub 2015 Mar 30.

PMID:
25790177
11.

Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2.

Dubiez E, Aleksandrov A, Lazennec-Schurdevin C, Mechulam Y, Schmitt E.

Nucleic Acids Res. 2015 Mar 11;43(5):2946-57. doi: 10.1093/nar/gkv053. Epub 2015 Feb 17.

12.

Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

Rzechorzek NJ, Blackwood JK, Bray SM, Maman JD, Pellegrini L, Robinson NP.

Nat Commun. 2014 Nov 25;5:5506. doi: 10.1038/ncomms6506.

13.

The structural basis of DNA binding by the single-stranded DNA-binding protein from Sulfolobus solfataricus.

Gamsjaeger R, Kariawasam R, Gimenez AX, Touma C, McIlwain E, Bernardo RE, Shepherd NE, Ataide SF, Dong Q, Richard DJ, White MF, Cubeddu L.

Biochem J. 2015 Jan 15;465(2):337-46. doi: 10.1042/BJ20141140.

PMID:
25367669
14.

The architecture of an Okazaki fragment-processing holoenzyme from the archaeon Sulfolobus solfataricus.

Cannone G, Xu Y, Beattie TR, Bell SD, Spagnolo L.

Biochem J. 2015 Jan 15;465(2):239-45. doi: 10.1042/BJ20141120.

PMID:
25299633
15.

Insight into the cellular involvement of the two reverse gyrases from the hyperthermophilic archaeon Sulfolobus solfataricus.

Couturier M, Bizard AH, Garnier F, Nadal M.

BMC Mol Biol. 2014 Sep 9;15:18. doi: 10.1186/1471-2199-15-18.

16.

Protein-protein interactions leading to recruitment of the host DNA sliding clamp by the hyperthermophilic Sulfolobus islandicus rod-shaped virus 2.

Gardner AF, Bell SD, White MF, Prangishvili D, Krupovic M.

J Virol. 2014 Jun;88(12):7105-8. doi: 10.1128/JVI.00636-14. Epub 2014 Apr 2.

17.

Conformational transitions in the γ subunit of the archaeal translation initiation factor 2.

Nikonov O, Stolboushkina E, Arkhipova V, Kravchenko O, Nikonov S, Garber M.

Acta Crystallogr D Biol Crystallogr. 2014 Mar;70(Pt 3):658-67. doi: 10.1107/S1399004713032240. Epub 2014 Feb 15.

PMID:
24598735
18.
19.

Identification of substrate-binding and selectivity-related residues of maltooligosyltrehalose synthase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092.

Tseng WC, Lin CR, Hung XG, Wei TY, Chen YC, Fang TY.

Enzyme Microb Technol. 2014 Mar 5;56:53-9. doi: 10.1016/j.enzmictec.2014.01.003. Epub 2014 Jan 15.

PMID:
24564903
20.

Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis.

Zaccardi MJ, O'Rourke KF, Yezdimer EM, Loggia LJ, Woldt S, Boehr DD.

Protein Sci. 2014 Mar;23(3):302-11. doi: 10.1002/pro.2416. Epub 2014 Feb 4.

Supplemental Content

Support Center