Format
Sort by
Items per page

Send to

Choose Destination

Links from Gene

Items: 1 to 20 of 24

1.

Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation.

Fluhrer R, Fukumori A, Martin L, Grammer G, Haug-Kröper M, Klier B, Winkler E, Kremmer E, Condron MM, Teplow DB, Steiner H, Haass C.

J Biol Chem. 2008 Oct 31;283(44):30121-8. doi: 10.1074/jbc.M806092200. Epub 2008 Sep 3.

2.

The transferrin receptor-1 membrane stub undergoes intramembrane proteolysis by signal peptide peptidase-like 2b.

Zahn C, Kaup M, Fluhrer R, Fuchs H.

FEBS J. 2013 Apr;280(7):1653-63. doi: 10.1111/febs.12176. Epub 2013 Mar 1.

3.

The α-helical content of the transmembrane domain of the British dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b).

Fluhrer R, Martin L, Klier B, Haug-Kröper M, Grammer G, Nuscher B, Haass C.

J Biol Chem. 2012 Feb 10;287(7):5156-63. doi: 10.1074/jbc.M111.328104. Epub 2011 Dec 22.

4.

A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b.

Fluhrer R, Grammer G, Israel L, Condron MM, Haffner C, Friedmann E, Böhland C, Imhof A, Martoglio B, Teplow DB, Haass C.

Nat Cell Biol. 2006 Aug;8(8):894-6. Epub 2006 Jul 9.

5.

Identification of signal peptide peptidase, a presenilin-type aspartic protease.

Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B.

Science. 2002 Jun 21;296(5576):2215-8.

6.

Novel class of polytopic proteins with domains associated with putative protease activity.

Grigorenko AP, Moliaka YK, Korovaitseva GI, Rogaev EI.

Biochemistry (Mosc). 2002 Jul;67(7):826-35.

7.

In vivo measurements of ethanol concentration in rabbit brain by 1H magnetic resonance spectroscopy.

Petroff OA, Novotny EJ, Ogino T, Avison M, Prichard JW.

J Neurochem. 1990 Apr;54(4):1188-95.

PMID:
2313285
8.

Substrate requirements for SPPL2b-dependent regulated intramembrane proteolysis.

Martin L, Fluhrer R, Haass C.

J Biol Chem. 2009 Feb 27;284(9):5662-70. doi: 10.1074/jbc.M807485200. Epub 2008 Dec 29.

9.

Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase.

Nyborg AC, Ladd TB, Jansen K, Kukar T, Golde TE.

FASEB J. 2006 Aug;20(10):1671-9.

PMID:
16873890
10.

Signal-peptide-peptidase-like 2a (SPPL2a) is targeted to lysosomes/late endosomes by a tyrosine motif in its C-terminal tail.

Behnke J, Schneppenheim J, Koch-Nolte F, Haag F, Saftig P, Schröder B.

FEBS Lett. 2011 Oct 3;585(19):2951-7. doi: 10.1016/j.febslet.2011.08.043. Epub 2011 Sep 2.

11.

Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3.

Krawitz P, Haffner C, Fluhrer R, Steiner H, Schmid B, Haass C.

J Biol Chem. 2005 Nov 25;280(47):39515-23. Epub 2005 Jul 5.

12.

SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production.

Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF, Kuhn PH, Stauffer D, Rovelli G, Martoglio B.

Nat Cell Biol. 2006 Aug;8(8):843-8. Epub 2006 Jul 9.

PMID:
16829952
13.

Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins.

Friedmann E, Lemberg MK, Weihofen A, Dev KK, Dengler U, Rovelli G, Martoglio B.

J Biol Chem. 2004 Dec 3;279(49):50790-8. Epub 2004 Sep 21.

14.

Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b.

Martin L, Fluhrer R, Reiss K, Kremmer E, Saftig P, Haass C.

J Biol Chem. 2008 Jan 18;283(3):1644-52. Epub 2007 Oct 25.

15.

Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease.

Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R; International Parkinson's Disease Genomics Consortium (IPDGC); Parkinson's Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson's Disease Consortium; Alzheimer Genetic Analysis Group, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB.

Nat Genet. 2014 Sep;46(9):989-93. doi: 10.1038/ng.3043. Epub 2014 Jul 27.

16.
17.

The DNA sequence and biology of human chromosome 19.

Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, Aerts A, Altherr M, Ashworth L, Bajorek E, Black S, Branscomb E, Caenepeel S, Carrano A, Caoile C, Chan YM, Christensen M, Cleland CA, Copeland A, Dalin E, Dehal P, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Garcia C, Georgescu AM, Glavina T, Gomez M, Gonzales E, Groza M, Hammon N, Hawkins T, Haydu L, Ho I, Huang W, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Larionov V, Leem SH, Lopez F, Lou Y, Lowry S, Malfatti S, Martinez D, McCready P, Medina C, Morgan J, Nelson K, Nolan M, Ovcharenko I, Pitluck S, Pollard M, Popkie AP, Predki P, Quan G, Ramirez L, Rash S, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, She X, Smith D, Slezak T, Solovyev V, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wagner M, Wheeler J, Wu K, Xie G, Yang J, Dubchak I, Furey TS, DeJong P, Dickson M, Gordon D, Eichler EE, Pennacchio LA, Richardson P, Stubbs L, Rokhsar DS, Myers RM, Rubin EM, Lucas SM.

Nature. 2004 Apr 1;428(6982):529-35.

PMID:
15057824
18.

Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.

Fei T, Chen Y, Xiao T, Li W, Cato L, Zhang P, Cotter MB, Bowden M, Lis RT, Zhao SG, Wu Q, Feng FY, Loda M, He HH, Liu XS, Brown M.

Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5207-E5215. doi: 10.1073/pnas.1617467114. Epub 2017 Jun 13.

19.

The BioPlex Network: A Systematic Exploration of the Human Interactome.

Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites LP, Ordureau A, Rad R, Erickson BK, Wühr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar RA, Harris T, Artavanis-Tsakonas S, Sowa ME, De Camilli P, Paulo JA, Harper JW, Gygi SP.

Cell. 2015 Jul 16;162(2):425-440. doi: 10.1016/j.cell.2015.06.043.

20.

Architecture of the human interactome defines protein communities and disease networks.

Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW.

Nature. 2017 May 25;545(7655):505-509. doi: 10.1038/nature22366. Epub 2017 May 17.

Supplemental Content

Support Center