Format
Sort by
Items per page

Send to

Choose Destination

Links from Gene

Items: 1 to 20 of 29

1.

Exome array analysis identifies GPR35 as a novel susceptibility gene for anthracycline-induced cardiotoxicity in childhood cancer.

Ruiz-Pinto S, Pita G, Patiño-García A, Alonso J, Pérez-Martínez A, Cartón AJ, Gutiérrez-Larraya F, Alonso MR, Barnes DR, Dennis J, Michailidou K, Gómez-Santos C, Thompson DJ, Easton DF, Benítez J, González-Neira A.

Pharmacogenet Genomics. 2017 Dec;27(12):445-453. doi: 10.1097/FPC.0000000000000309.

PMID:
28961156
2.

Chemical genomic analysis of GPR35 signaling.

Hu HH, Deng H, Ling S, Sun H, Kenakin T, Liang X, Fang Y.

Integr Biol (Camb). 2017 May 22;9(5):451-463. doi: 10.1039/c7ib00005g.

PMID:
28425521
3.

G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation.

McCallum JE, Mackenzie AE, Divorty N, Clarke C, Delles C, Milligan G, Nicklin SA.

J Vasc Res. 2015;52(6):383-95. doi: 10.1159/000444754. Epub 2016 Apr 12.

4.

Crucial positively charged residues for ligand activation of the GPR35 receptor.

Zhao P, Lane TR, Gao HG, Hurst DP, Kotsikorou E, Le L, Brailoiu E, Reggio PH, Abood ME.

J Biol Chem. 2014 Feb 7;289(6):3625-38. doi: 10.1074/jbc.M113.508382. Epub 2013 Dec 17.

5.

Expression of functional GPR35 in human iNKT cells.

Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G.

Biochem Biophys Res Commun. 2010 Jul 30;398(3):420-5. doi: 10.1016/j.bbrc.2010.06.091. Epub 2010 Jun 25.

PMID:
20599711
6.

GPR35 is a novel lysophosphatidic acid receptor.

Oka S, Ota R, Shima M, Yamashita A, Sugiura T.

Biochem Biophys Res Commun. 2010 Apr 30;395(2):232-7. doi: 10.1016/j.bbrc.2010.03.169. Epub 2010 Mar 31.

PMID:
20361937
7.

Cloning of a G-protein-coupled receptor that shows an activity to transform NIH3T3 cells and is expressed in gastric cancer cells.

Okumura S, Baba H, Kumada T, Nanmoku K, Nakajima H, Nakane Y, Hioki K, Ikenaka K.

Cancer Sci. 2004 Feb;95(2):131-5.

8.
9.

The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer.

Guo YJ, Zhou YJ, Yang XL, Shao ZM, Ou ZL.

Biochem Biophys Res Commun. 2017 Nov 25;493(3):1159-1167. doi: 10.1016/j.bbrc.2017.09.113. Epub 2017 Sep 21.

PMID:
28943434
10.

Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4.

Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, Laerdahl JK, Shiryaev A, Gotthardt DN, Weismüller TJ, Schramm C, Wittig M, Bergquist A, Björnsson E, Marschall HU, Vatn M, Teufel A, Rust C, Gieger C, Wichmann HE, Runz H, Sterneck M, Rupp C, Braun F, Weersma RK, Wijmenga C, Ponsioen CY, Mathew CG, Rutgeerts P, Vermeire S, Schrumpf E, Hov JR, Manns MP, Boberg KM, Schreiber S, Franke A, Karlsen TH.

Hepatology. 2013 Sep;58(3):1074-83. doi: 10.1002/hep.25977. Epub 2013 Jan 17.

PMID:
22821403
11.

GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors.

Zhao P, Abood ME.

Life Sci. 2013 Mar 19;92(8-9):453-7. doi: 10.1016/j.lfs.2012.06.039. Epub 2012 Jul 20. Review.

PMID:
22820167
12.

Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13.

Jenkins L, Brea J, Smith NJ, Hudson BD, Reilly G, Bryant NJ, Castro M, Loza MI, Milligan G.

Biochem J. 2010 Dec 15;432(3):451-9. doi: 10.1042/BJ20101287.

PMID:
20919992
13.

Application of machine learning algorithms to predict coronary artery calcification with a sibship-based design.

Sun YV, Bielak LF, Peyser PA, Turner ST, Sheedy PF 2nd, Boerwinkle E, Kardia SL.

Genet Epidemiol. 2008 May;32(4):350-60. doi: 10.1002/gepi.20309.

14.

Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons.

Guo J, Williams DJ, Puhl HL 3rd, Ikeda SR.

J Pharmacol Exp Ther. 2008 Jan;324(1):342-51. Epub 2007 Oct 16.

15.

Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

Yang SK, Hong M, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Lee I, Kim WH, Cheon JH, Kim YH, Jang BI, Kim HS, Choi JH, Koo JS, Lee JH, Jung SA, Shin HD, Kang D, Youn HS, Taylor KD, Rotter JI, Liu J, McGovern DP, Song K.

Inflamm Bowel Dis. 2015 Jan;21(1):1-7. doi: 10.1097/MIB.0000000000000268.

16.

Genetic signatures for enhanced olfaction in the African mole-rats.

Stathopoulos S, Bishop JM, O'Ryan C.

PLoS One. 2014 Apr 3;9(4):e93336. doi: 10.1371/journal.pone.0093336. eCollection 2014.

17.

Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35.

Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L.

J Biol Chem. 2006 Aug 4;281(31):22021-8. Epub 2006 Jun 5.

18.

Discovery of three novel G-protein-coupled receptor genes.

O'Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HH, Kolakowski LF Jr, George SR.

Genomics. 1998 Jan 15;47(2):310-3.

PMID:
9479505
19.

Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17.

Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A.

J Immunol. 2015 Jan 1;194(1):29-33. doi: 10.4049/jimmunol.1401704. Epub 2014 Nov 19.

20.

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus.

Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI.

Nat Genet. 2000 Oct;26(2):163-75. Erratum in: Nat Genet 2000 Dec;26(4):502.

PMID:
11017071

Supplemental Content

Support Center